Spaces:
Configuration error
Configuration error
| # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| import torch | |
| import numpy as np | |
| import threading | |
| import time | |
| from contextlib import nullcontext | |
| import uuid | |
| from cosyvoice.utils.common import fade_in_out | |
| import numpy as np | |
| import onnxruntime as ort | |
| class CosyVoiceModel: | |
| def __init__(self, | |
| llm: torch.nn.Module, | |
| flow: torch.nn.Module, | |
| hift: torch.nn.Module): | |
| self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| self.llm = llm | |
| self.flow = flow | |
| self.hift = hift | |
| self.token_min_hop_len = 100 | |
| self.token_max_hop_len = 200 | |
| self.token_overlap_len = 20 | |
| # mel fade in out | |
| self.mel_overlap_len = 34 | |
| self.mel_window = np.hamming(2 * self.mel_overlap_len) | |
| # hift cache | |
| self.mel_cache_len = 20 | |
| self.source_cache_len = int(self.mel_cache_len * 256) | |
| # rtf and decoding related | |
| self.stream_scale_factor = 1 | |
| assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf' | |
| self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext() | |
| self.flow_hift_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext() | |
| self.lock = threading.Lock() | |
| # dict used to store session related variable | |
| self.tts_speech_token_dict = {} | |
| self.llm_end_dict = {} | |
| self.mel_overlap_dict = {} | |
| self.hift_cache_dict = {} | |
| def load(self, llm_model, flow_model, hift_model): | |
| self.llm.load_state_dict(torch.load(llm_model, map_location=self.device)) | |
| self.llm.to(self.device).eval() | |
| self.llm.half() | |
| self.flow.load_state_dict(torch.load(flow_model, map_location=self.device)) | |
| self.flow.to(self.device).eval() | |
| self.hift.load_state_dict(torch.load(hift_model, map_location=self.device)) | |
| self.hift.to(self.device).eval() | |
| def load_jit(self, llm_text_encoder_model, llm_llm_model): | |
| llm_text_encoder = torch.jit.load(llm_text_encoder_model) | |
| self.llm.text_encoder = llm_text_encoder | |
| llm_llm = torch.jit.load(llm_llm_model) | |
| self.llm.llm = llm_llm | |
| # def load_trt(self, model_dir, use_fp16): | |
| # import tensorrt as trt | |
| # trt_file_name = 'estimator_fp16.plan' if use_fp16 else 'estimator_fp32.plan' | |
| # trt_file_path = os.path.join(model_dir, trt_file_name) | |
| # if not os.path.isfile(trt_file_path): | |
| # raise f"{trt_file_path} does not exist. Please use bin/export_trt.py to generate .plan file" | |
| # trt.init_libnvinfer_plugins(None, "") | |
| # logger = trt.Logger(trt.Logger.WARNING) | |
| # runtime = trt.Runtime(logger) | |
| # with open(trt_file_path, 'rb') as f: | |
| # serialized_engine = f.read() | |
| # engine = runtime.deserialize_cuda_engine(serialized_engine) | |
| # self.flow.decoder.estimator_context = engine.create_execution_context() | |
| # self.flow.decoder.estimator = None | |
| def load_onnx(self, model_dir, use_fp16): | |
| onnx_file_name = 'estimator_fp16.onnx' if use_fp16 else 'estimator_fp32.onnx' | |
| onnx_file_path = os.path.join(model_dir, onnx_file_name) | |
| if not os.path.isfile(onnx_file_path): | |
| raise f"{onnx_file_path} does not exist. Please use bin/export_trt.py to generate .onnx file" | |
| providers = ['CUDAExecutionProvider'] | |
| sess_options = ort.SessionOptions() | |
| # Add TensorRT Execution Provider | |
| providers = [ | |
| 'CUDAExecutionProvider' | |
| ] | |
| # Load the ONNX model | |
| self.flow.decoder.session = ort.InferenceSession(onnx_file_path, sess_options=sess_options, providers=providers) | |
| # self.flow.decoder.estimator_context = None | |
| self.flow.decoder.estimator = None | |
| def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid): | |
| with self.llm_context: | |
| for i in self.llm.inference(text=text.to(self.device), | |
| text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device), | |
| prompt_text=prompt_text.to(self.device), | |
| prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device), | |
| prompt_speech_token=llm_prompt_speech_token.to(self.device), | |
| prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device), | |
| embedding=llm_embedding.to(self.device).half(), | |
| sampling=25, | |
| max_token_text_ratio=30, | |
| min_token_text_ratio=3): | |
| self.tts_speech_token_dict[uuid].append(i) | |
| self.llm_end_dict[uuid] = True | |
| def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False): | |
| with self.flow_hift_context: | |
| tts_mel = self.flow.inference(token=token.to(self.device), | |
| token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device), | |
| prompt_token=prompt_token.to(self.device), | |
| prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device), | |
| prompt_feat=prompt_feat.to(self.device), | |
| prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device), | |
| embedding=embedding.to(self.device)) | |
| # mel overlap fade in out | |
| if self.mel_overlap_dict[uuid] is not None: | |
| tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window) | |
| # append hift cache | |
| if self.hift_cache_dict[uuid] is not None: | |
| hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source'] | |
| tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2) | |
| else: | |
| hift_cache_source = torch.zeros(1, 1, 0) | |
| # keep overlap mel and hift cache | |
| if finalize is False: | |
| self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:] | |
| tts_mel = tts_mel[:, :, :-self.mel_overlap_len] | |
| tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source) | |
| self.hift_cache_dict[uuid] = {'source': tts_source[:, :, -self.source_cache_len:], 'mel': tts_mel[:, :, -self.mel_cache_len:]} | |
| tts_speech = tts_speech[:, :-self.source_cache_len] | |
| else: | |
| tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source) | |
| return tts_speech | |
| def inference(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192), | |
| prompt_text=torch.zeros(1, 0, dtype=torch.int32), | |
| llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), | |
| flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), | |
| prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, **kwargs): | |
| # this_uuid is used to track variables related to this inference thread | |
| this_uuid = str(uuid.uuid1()) | |
| with self.lock: | |
| self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid], self.mel_overlap_dict[this_uuid], self.hift_cache_dict[this_uuid] = [], False, None, None | |
| p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid)) | |
| p.start() | |
| if stream is True: | |
| token_hop_len = self.token_min_hop_len | |
| while True: | |
| time.sleep(0.1) | |
| if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len: | |
| this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len], dim=1) | |
| with self.flow_hift_context: | |
| this_tts_speech = self.token2wav(token=this_tts_speech_token, | |
| prompt_token=flow_prompt_speech_token, | |
| prompt_feat=prompt_speech_feat, | |
| embedding=flow_embedding, | |
| uuid=this_uuid, | |
| finalize=False) | |
| yield {'tts_speech': this_tts_speech.cpu()} | |
| with self.lock: | |
| self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:] | |
| # increase token_hop_len for better speech quality | |
| token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor)) | |
| if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len: | |
| break | |
| p.join() | |
| # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None | |
| this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid], dim=1) | |
| with self.flow_hift_context: | |
| this_tts_speech = self.token2wav(token=this_tts_speech_token, | |
| prompt_token=flow_prompt_speech_token, | |
| prompt_feat=prompt_speech_feat, | |
| embedding=flow_embedding, | |
| uuid=this_uuid, | |
| finalize=True) | |
| yield {'tts_speech': this_tts_speech.cpu()} | |
| else: | |
| # deal with all tokens | |
| p.join() | |
| this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid], dim=1) | |
| with self.flow_hift_context: | |
| this_tts_speech = self.token2wav(token=this_tts_speech_token, | |
| prompt_token=flow_prompt_speech_token, | |
| prompt_feat=prompt_speech_feat, | |
| embedding=flow_embedding, | |
| uuid=this_uuid, | |
| finalize=True) | |
| yield {'tts_speech': this_tts_speech.cpu()} | |
| with self.lock: | |
| self.tts_speech_token_dict.pop(this_uuid) | |
| self.llm_end_dict.pop(this_uuid) | |
| self.mel_overlap_dict.pop(this_uuid) | |
| self.hift_cache_dict.pop(this_uuid) | |
| torch.cuda.synchronize() | |