Spaces:
Configuration error
Configuration error
fix
Browse files- tools/extract_embedding.py +8 -23
tools/extract_embedding.py
CHANGED
|
@@ -21,11 +21,10 @@ import torch
|
|
| 21 |
import torchaudio
|
| 22 |
import torchaudio.compliance.kaldi as kaldi
|
| 23 |
from tqdm import tqdm
|
|
|
|
| 24 |
|
| 25 |
|
| 26 |
-
def extract_embedding(
|
| 27 |
-
utt, wav_file, ort_session = input_list
|
| 28 |
-
|
| 29 |
audio, sample_rate = torchaudio.load(wav_file)
|
| 30 |
if sample_rate != 16000:
|
| 31 |
audio = torchaudio.transforms.Resample(
|
|
@@ -33,19 +32,7 @@ def extract_embedding(input_list):
|
|
| 33 |
)(audio)
|
| 34 |
feat = kaldi.fbank(audio, num_mel_bins=80, dither=0, sample_frequency=16000)
|
| 35 |
feat = feat - feat.mean(dim=0, keepdim=True)
|
| 36 |
-
embedding = (
|
| 37 |
-
ort_session.run(
|
| 38 |
-
None,
|
| 39 |
-
{
|
| 40 |
-
ort_session.get_inputs()[0]
|
| 41 |
-
.name: feat.unsqueeze(dim=0)
|
| 42 |
-
.cpu()
|
| 43 |
-
.numpy()
|
| 44 |
-
},
|
| 45 |
-
)[0]
|
| 46 |
-
.flatten()
|
| 47 |
-
.tolist()
|
| 48 |
-
)
|
| 49 |
return (utt, embedding)
|
| 50 |
|
| 51 |
|
|
@@ -72,16 +59,14 @@ def main(args):
|
|
| 72 |
args.onnx_path, sess_options=option, providers=providers
|
| 73 |
)
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
for utt in tqdm(utt2wav.keys(), desc="Load data")
|
| 78 |
-
]
|
| 79 |
with ThreadPoolExecutor(max_workers=args.num_thread) as executor:
|
| 80 |
results = list(
|
| 81 |
tqdm(
|
| 82 |
-
executor.map(extract_embedding,
|
| 83 |
-
total=len(
|
| 84 |
-
desc="Process data: "
|
| 85 |
)
|
| 86 |
)
|
| 87 |
|
|
|
|
| 21 |
import torchaudio
|
| 22 |
import torchaudio.compliance.kaldi as kaldi
|
| 23 |
from tqdm import tqdm
|
| 24 |
+
from itertools import repeat
|
| 25 |
|
| 26 |
|
| 27 |
+
def extract_embedding(utt: str, wav_file: str, ort_session: onnxruntime.InferenceSession):
|
|
|
|
|
|
|
| 28 |
audio, sample_rate = torchaudio.load(wav_file)
|
| 29 |
if sample_rate != 16000:
|
| 30 |
audio = torchaudio.transforms.Resample(
|
|
|
|
| 32 |
)(audio)
|
| 33 |
feat = kaldi.fbank(audio, num_mel_bins=80, dither=0, sample_frequency=16000)
|
| 34 |
feat = feat - feat.mean(dim=0, keepdim=True)
|
| 35 |
+
embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
return (utt, embedding)
|
| 37 |
|
| 38 |
|
|
|
|
| 59 |
args.onnx_path, sess_options=option, providers=providers
|
| 60 |
)
|
| 61 |
|
| 62 |
+
all_utt = utt2wav.keys()
|
| 63 |
+
|
|
|
|
|
|
|
| 64 |
with ThreadPoolExecutor(max_workers=args.num_thread) as executor:
|
| 65 |
results = list(
|
| 66 |
tqdm(
|
| 67 |
+
executor.map(extract_embedding, all_utt, [utt2wav[utt] for utt in all_utt], repeat(ort_session)),
|
| 68 |
+
total=len(utt2wav),
|
| 69 |
+
desc="Process data: "
|
| 70 |
)
|
| 71 |
)
|
| 72 |
|