Spaces:
Configuration error
Configuration error
禾息
commited on
Commit
·
fadb220
1
Parent(s):
18599be
export onnx
Browse files- cosyvoice/bin/export_onnx.py +228 -0
- cosyvoice/bin/export_trt.py +0 -126
- cosyvoice/cli/cosyvoice.py +7 -4
- cosyvoice/cli/model.py +39 -13
- cosyvoice/flow/flow_matching.py +44 -21
cosyvoice/bin/export_onnx.py
ADDED
|
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, [email protected])
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import logging
|
| 17 |
+
import os
|
| 18 |
+
import sys
|
| 19 |
+
|
| 20 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
| 21 |
+
import onnxruntime as ort
|
| 22 |
+
import numpy as np
|
| 23 |
+
|
| 24 |
+
# try:
|
| 25 |
+
# import tensorrt
|
| 26 |
+
# import tensorrt as trt
|
| 27 |
+
# except ImportError:
|
| 28 |
+
# error_msg_zh = [
|
| 29 |
+
# "step.1 下载 tensorrt .tar.gz 压缩包并解压,下载地址: https://developer.nvidia.com/tensorrt/download/10x",
|
| 30 |
+
# "step.2 使用 tensorrt whl 包进行安装根据 python 版本对应进行安装,如 pip install ${TensorRT-Path}/python/tensorrt-10.2.0-cp38-none-linux_x86_64.whl",
|
| 31 |
+
# "step.3 将 tensorrt 的 lib 路径添加进环境变量中,export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${TensorRT-Path}/lib/"
|
| 32 |
+
# ]
|
| 33 |
+
# print("\n".join(error_msg_zh))
|
| 34 |
+
# sys.exit(1)
|
| 35 |
+
|
| 36 |
+
import torch
|
| 37 |
+
from cosyvoice.cli.cosyvoice import CosyVoice
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def calculate_onnx(onnx_file, x, mask, mu, t, spks, cond):
|
| 41 |
+
providers = ['CUDAExecutionProvider']
|
| 42 |
+
sess_options = ort.SessionOptions()
|
| 43 |
+
|
| 44 |
+
providers = [
|
| 45 |
+
'CUDAExecutionProvider'
|
| 46 |
+
]
|
| 47 |
+
|
| 48 |
+
# Load the ONNX model
|
| 49 |
+
session = ort.InferenceSession(onnx_file, sess_options=sess_options, providers=providers)
|
| 50 |
+
|
| 51 |
+
x_np = x.cpu().numpy()
|
| 52 |
+
mask_np = mask.cpu().numpy()
|
| 53 |
+
mu_np = mu.cpu().numpy()
|
| 54 |
+
t_np = np.array(t.cpu())
|
| 55 |
+
spks_np = spks.cpu().numpy()
|
| 56 |
+
cond_np = cond.cpu().numpy()
|
| 57 |
+
|
| 58 |
+
ort_inputs = {
|
| 59 |
+
'x': x_np,
|
| 60 |
+
'mask': mask_np,
|
| 61 |
+
'mu': mu_np,
|
| 62 |
+
't': t_np,
|
| 63 |
+
'spks': spks_np,
|
| 64 |
+
'cond': cond_np
|
| 65 |
+
}
|
| 66 |
+
|
| 67 |
+
output = session.run(None, ort_inputs)
|
| 68 |
+
|
| 69 |
+
return output[0]
|
| 70 |
+
|
| 71 |
+
# def calculate_tensorrt(trt_file, x, mask, mu, t, spks, cond):
|
| 72 |
+
# trt.init_libnvinfer_plugins(None, "")
|
| 73 |
+
# logger = trt.Logger(trt.Logger.WARNING)
|
| 74 |
+
# runtime = trt.Runtime(logger)
|
| 75 |
+
# with open(trt_file, 'rb') as f:
|
| 76 |
+
# serialized_engine = f.read()
|
| 77 |
+
# engine = runtime.deserialize_cuda_engine(serialized_engine)
|
| 78 |
+
# context = engine.create_execution_context()
|
| 79 |
+
|
| 80 |
+
# bs = x.shape[0]
|
| 81 |
+
# hs = x.shape[1]
|
| 82 |
+
# seq_len = x.shape[2]
|
| 83 |
+
|
| 84 |
+
# ret = torch.zeros_like(x)
|
| 85 |
+
|
| 86 |
+
# # Set input shapes for dynamic dimensions
|
| 87 |
+
# context.set_input_shape("x", x.shape)
|
| 88 |
+
# context.set_input_shape("mask", mask.shape)
|
| 89 |
+
# context.set_input_shape("mu", mu.shape)
|
| 90 |
+
# context.set_input_shape("t", t.shape)
|
| 91 |
+
# context.set_input_shape("spks", spks.shape)
|
| 92 |
+
# context.set_input_shape("cond", cond.shape)
|
| 93 |
+
|
| 94 |
+
# # bindings = [x.data_ptr(), mask.data_ptr(), mu.data_ptr(), t.data_ptr(), spks.data_ptr(), cond.data_ptr(), ret.data_ptr()]
|
| 95 |
+
# # names = ['x', 'mask', 'mu', 't', 'spks', 'cond', 'estimator_out']
|
| 96 |
+
# #
|
| 97 |
+
# # for i in range(len(bindings)):
|
| 98 |
+
# # context.set_tensor_address(names[i], bindings[i])
|
| 99 |
+
# #
|
| 100 |
+
# # handle = torch.cuda.current_stream().cuda_stream
|
| 101 |
+
# # context.execute_async_v3(stream_handle=handle)
|
| 102 |
+
|
| 103 |
+
# # Create a list of bindings
|
| 104 |
+
# bindings = [int(x.data_ptr()), int(mask.data_ptr()), int(mu.data_ptr()), int(t.data_ptr()), int(spks.data_ptr()), int(cond.data_ptr()), int(ret.data_ptr())]
|
| 105 |
+
|
| 106 |
+
# # Execute the inference
|
| 107 |
+
# context.execute_v2(bindings=bindings)
|
| 108 |
+
|
| 109 |
+
# torch.cuda.synchronize()
|
| 110 |
+
|
| 111 |
+
# return ret
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
# def test_calculate_value(estimator, onnx_file, trt_file, dummy_input, args):
|
| 115 |
+
# torch_output = estimator.forward(**dummy_input).cpu().detach().numpy()
|
| 116 |
+
# onnx_output = calculate_onnx(onnx_file, **dummy_input)
|
| 117 |
+
# tensorrt_output = calculate_tensorrt(trt_file, **dummy_input).cpu().detach().numpy()
|
| 118 |
+
# atol = 2e-3 # Absolute tolerance
|
| 119 |
+
# rtol = 1e-4 # Relative tolerance
|
| 120 |
+
|
| 121 |
+
# print(f"args.export_half: {args.export_half}, args.model_dir: {args.model_dir}")
|
| 122 |
+
# print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
|
| 123 |
+
|
| 124 |
+
# print("torch_output diff with onnx_output: ", )
|
| 125 |
+
# print(f"compare with atol: {atol}, rtol: {rtol} ", np.allclose(torch_output, onnx_output, atol, rtol))
|
| 126 |
+
# print(f"max diff value: ", np.max(np.fabs(torch_output - onnx_output)))
|
| 127 |
+
# print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
|
| 128 |
+
|
| 129 |
+
# print("torch_output diff with tensorrt_output: ")
|
| 130 |
+
# print(f"compare with atol: {atol}, rtol: {rtol} ", np.allclose(torch_output, tensorrt_output, atol, rtol))
|
| 131 |
+
# print(f"max diff value: ", np.max(np.fabs(torch_output - tensorrt_output)))
|
| 132 |
+
# print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
|
| 133 |
+
|
| 134 |
+
# print("onnx_output diff with tensorrt_output: ")
|
| 135 |
+
# print(f"compare with atol: {atol}, rtol: {rtol} ", np.allclose(onnx_output, tensorrt_output, atol, rtol))
|
| 136 |
+
# print(f"max diff value: ", np.max(np.fabs(onnx_output - tensorrt_output)))
|
| 137 |
+
# print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def get_args():
|
| 141 |
+
parser = argparse.ArgumentParser(description='Export your model for deployment')
|
| 142 |
+
parser.add_argument('--model_dir', type=str, default='pretrained_models/CosyVoice-300M', help='Local path to the model directory')
|
| 143 |
+
parser.add_argument('--export_half', type=str, choices=['True', 'False'], default='False', help='Export with half precision (FP16)')
|
| 144 |
+
# parser.add_argument('--trt_max_len', type=int, default=8192, help='Export max len')
|
| 145 |
+
parser.add_argument('--exec_export', type=str, choices=['True', 'False'], default='True', help='Exec export')
|
| 146 |
+
|
| 147 |
+
args = parser.parse_args()
|
| 148 |
+
args.export_half = args.export_half == 'True'
|
| 149 |
+
args.exec_export = args.exec_export == 'True'
|
| 150 |
+
print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
|
| 151 |
+
print(args)
|
| 152 |
+
return args
|
| 153 |
+
|
| 154 |
+
def main():
|
| 155 |
+
args = get_args()
|
| 156 |
+
|
| 157 |
+
cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_trt=False)
|
| 158 |
+
estimator = cosyvoice.model.flow.decoder.estimator
|
| 159 |
+
|
| 160 |
+
dtype = torch.float32 if not args.export_half else torch.float16
|
| 161 |
+
device = torch.device("cuda")
|
| 162 |
+
batch_size = 1
|
| 163 |
+
seq_len = 256
|
| 164 |
+
out_channels = cosyvoice.model.flow.decoder.estimator.out_channels
|
| 165 |
+
x = torch.rand((batch_size, out_channels, seq_len), dtype=dtype, device=device)
|
| 166 |
+
mask = torch.ones((batch_size, 1, seq_len), dtype=dtype, device=device)
|
| 167 |
+
mu = torch.rand((batch_size, out_channels, seq_len), dtype=dtype, device=device)
|
| 168 |
+
t = torch.rand((batch_size, ), dtype=dtype, device=device)
|
| 169 |
+
spks = torch.rand((batch_size, out_channels), dtype=dtype, device=device)
|
| 170 |
+
cond = torch.rand((batch_size, out_channels, seq_len), dtype=dtype, device=device)
|
| 171 |
+
|
| 172 |
+
onnx_file_name = 'estimator_fp32.onnx' if not args.export_half else 'estimator_fp16.onnx'
|
| 173 |
+
onnx_file_path = os.path.join(args.model_dir, onnx_file_name)
|
| 174 |
+
dummy_input = (x, mask, mu, t, spks, cond)
|
| 175 |
+
|
| 176 |
+
estimator = estimator.to(dtype)
|
| 177 |
+
|
| 178 |
+
if args.exec_export:
|
| 179 |
+
torch.onnx.export(
|
| 180 |
+
estimator,
|
| 181 |
+
dummy_input,
|
| 182 |
+
onnx_file_path,
|
| 183 |
+
export_params=True,
|
| 184 |
+
opset_version=18,
|
| 185 |
+
do_constant_folding=True,
|
| 186 |
+
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
| 187 |
+
output_names=['estimator_out'],
|
| 188 |
+
dynamic_axes={
|
| 189 |
+
'x': {2: 'seq_len'},
|
| 190 |
+
'mask': {2: 'seq_len'},
|
| 191 |
+
'mu': {2: 'seq_len'},
|
| 192 |
+
'cond': {2: 'seq_len'},
|
| 193 |
+
'estimator_out': {2: 'seq_len'},
|
| 194 |
+
}
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
# tensorrt_path = os.environ.get('tensorrt_root_dir')
|
| 198 |
+
# if not tensorrt_path:
|
| 199 |
+
# raise EnvironmentError("Please set the 'tensorrt_root_dir' environment variable.")
|
| 200 |
+
|
| 201 |
+
# if not os.path.isdir(tensorrt_path):
|
| 202 |
+
# raise FileNotFoundError(f"The directory {tensorrt_path} does not exist.")
|
| 203 |
+
|
| 204 |
+
# trt_lib_path = os.path.join(tensorrt_path, "lib")
|
| 205 |
+
# if trt_lib_path not in os.environ.get('LD_LIBRARY_PATH', ''):
|
| 206 |
+
# print(f"Adding TensorRT lib path {trt_lib_path} to LD_LIBRARY_PATH.")
|
| 207 |
+
# os.environ['LD_LIBRARY_PATH'] = f"{os.environ.get('LD_LIBRARY_PATH', '')}:{trt_lib_path}"
|
| 208 |
+
|
| 209 |
+
# trt_file_name = 'estimator_fp32.plan' if not args.export_half else 'estimator_fp16.plan'
|
| 210 |
+
# trt_file_path = os.path.join(args.model_dir, trt_file_name)
|
| 211 |
+
|
| 212 |
+
# trtexec_bin = os.path.join(tensorrt_path, 'bin/trtexec')
|
| 213 |
+
# trt_max_len = args.trt_max_len
|
| 214 |
+
# trtexec_cmd = f"{trtexec_bin} --onnx={onnx_file_path} --saveEngine={trt_file_path} " \
|
| 215 |
+
# f"--minShapes=x:1x{out_channels}x1,mask:1x1x1,mu:1x{out_channels}x1,t:1,spks:1x{out_channels},cond:1x{out_channels}x1 " \
|
| 216 |
+
# f"--maxShapes=x:1x{out_channels}x{trt_max_len},mask:1x1x{trt_max_len},mu:1x{out_channels}x{trt_max_len},t:1,spks:1x{out_channels},cond:1x{out_channels}x{trt_max_len} " + \
|
| 217 |
+
# ("--fp16" if args.export_half else "")
|
| 218 |
+
|
| 219 |
+
# print("execute ", trtexec_cmd)
|
| 220 |
+
|
| 221 |
+
# if args.exec_export:
|
| 222 |
+
# os.system(trtexec_cmd)
|
| 223 |
+
|
| 224 |
+
# dummy_input = {'x': x, 'mask': mask, 'mu': mu, 't': t, 'spks': spks, 'cond': cond}
|
| 225 |
+
# test_calculate_value(estimator, onnx_file_path, trt_file_path, dummy_input, args)
|
| 226 |
+
|
| 227 |
+
if __name__ == "__main__":
|
| 228 |
+
main()
|
cosyvoice/bin/export_trt.py
DELETED
|
@@ -1,126 +0,0 @@
|
|
| 1 |
-
# Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, [email protected])
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
|
| 15 |
-
import argparse
|
| 16 |
-
import logging
|
| 17 |
-
import os
|
| 18 |
-
import sys
|
| 19 |
-
|
| 20 |
-
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
| 21 |
-
|
| 22 |
-
try:
|
| 23 |
-
import tensorrt
|
| 24 |
-
except ImportError:
|
| 25 |
-
error_msg_zh = [
|
| 26 |
-
"step.1 下载 tensorrt .tar.gz 压缩包并解压,下载地址: https://developer.nvidia.com/tensorrt/download/10x",
|
| 27 |
-
"step.2 使用 tensorrt whl 包进行安装根据 python 版本对应进行安装,如 pip install ${TensorRT-Path}/python/tensorrt-10.2.0-cp38-none-linux_x86_64.whl",
|
| 28 |
-
"step.3 将 tensorrt 的 lib 路径添加进环境变量中,export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${TensorRT-Path}/lib/"
|
| 29 |
-
]
|
| 30 |
-
print("\n".join(error_msg_zh))
|
| 31 |
-
sys.exit(1)
|
| 32 |
-
|
| 33 |
-
import torch
|
| 34 |
-
from cosyvoice.cli.cosyvoice import CosyVoice
|
| 35 |
-
|
| 36 |
-
def get_args():
|
| 37 |
-
parser = argparse.ArgumentParser(description='Export your model for deployment')
|
| 38 |
-
parser.add_argument('--model_dir',
|
| 39 |
-
type=str,
|
| 40 |
-
default='pretrained_models/CosyVoice-300M-SFT',
|
| 41 |
-
help='Local path to the model directory')
|
| 42 |
-
|
| 43 |
-
parser.add_argument('--export_half',
|
| 44 |
-
action='store_true',
|
| 45 |
-
help='Export with half precision (FP16)')
|
| 46 |
-
|
| 47 |
-
args = parser.parse_args()
|
| 48 |
-
print(args)
|
| 49 |
-
return args
|
| 50 |
-
|
| 51 |
-
def main():
|
| 52 |
-
args = get_args()
|
| 53 |
-
|
| 54 |
-
cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_trt=False)
|
| 55 |
-
estimator = cosyvoice.model.flow.decoder.estimator
|
| 56 |
-
|
| 57 |
-
dtype = torch.float32 if not args.export_half else torch.float16
|
| 58 |
-
device = torch.device("cuda")
|
| 59 |
-
batch_size = 1
|
| 60 |
-
seq_len = 256
|
| 61 |
-
hidden_size = cosyvoice.model.flow.output_size
|
| 62 |
-
x = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
| 63 |
-
mask = torch.ones((batch_size, 1, seq_len), dtype=dtype, device=device)
|
| 64 |
-
mu = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
| 65 |
-
t = torch.rand((batch_size, ), dtype=dtype, device=device)
|
| 66 |
-
spks = torch.rand((batch_size, hidden_size), dtype=dtype, device=device)
|
| 67 |
-
cond = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
| 68 |
-
|
| 69 |
-
onnx_file_name = 'estimator_fp32.onnx' if not args.export_half else 'estimator_fp16.onnx'
|
| 70 |
-
onnx_file_path = os.path.join(args.model_dir, onnx_file_name)
|
| 71 |
-
dummy_input = (x, mask, mu, t, spks, cond)
|
| 72 |
-
|
| 73 |
-
estimator = estimator.to(dtype)
|
| 74 |
-
|
| 75 |
-
torch.onnx.export(
|
| 76 |
-
estimator,
|
| 77 |
-
dummy_input,
|
| 78 |
-
onnx_file_path,
|
| 79 |
-
export_params=True,
|
| 80 |
-
opset_version=18,
|
| 81 |
-
do_constant_folding=True,
|
| 82 |
-
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
| 83 |
-
output_names=['estimator_out'],
|
| 84 |
-
dynamic_axes={
|
| 85 |
-
'x': {2: 'seq_len'},
|
| 86 |
-
'mask': {2: 'seq_len'},
|
| 87 |
-
'mu': {2: 'seq_len'},
|
| 88 |
-
'cond': {2: 'seq_len'},
|
| 89 |
-
'estimator_out': {2: 'seq_len'},
|
| 90 |
-
}
|
| 91 |
-
)
|
| 92 |
-
|
| 93 |
-
tensorrt_path = os.environ.get('tensorrt_root_dir')
|
| 94 |
-
if not tensorrt_path:
|
| 95 |
-
raise EnvironmentError("Please set the 'tensorrt_root_dir' environment variable.")
|
| 96 |
-
|
| 97 |
-
if not os.path.isdir(tensorrt_path):
|
| 98 |
-
raise FileNotFoundError(f"The directory {tensorrt_path} does not exist.")
|
| 99 |
-
|
| 100 |
-
trt_lib_path = os.path.join(tensorrt_path, "lib")
|
| 101 |
-
if trt_lib_path not in os.environ.get('LD_LIBRARY_PATH', ''):
|
| 102 |
-
print(f"Adding TensorRT lib path {trt_lib_path} to LD_LIBRARY_PATH.")
|
| 103 |
-
os.environ['LD_LIBRARY_PATH'] = f"{os.environ.get('LD_LIBRARY_PATH', '')}:{trt_lib_path}"
|
| 104 |
-
|
| 105 |
-
trt_file_name = 'estimator_fp32.plan' if not args.export_half else 'estimator_fp16.plan'
|
| 106 |
-
trt_file_path = os.path.join(args.model_dir, trt_file_name)
|
| 107 |
-
|
| 108 |
-
trtexec_bin = os.path.join(tensorrt_path, 'bin/trtexec')
|
| 109 |
-
trtexec_cmd = f"{trtexec_bin} --onnx={onnx_file_path} --saveEngine={trt_file_path} " \
|
| 110 |
-
"--minShapes=x:1x80x1,mask:1x1x1,mu:1x80x1,t:1,spks:1x80,cond:1x80x1 " \
|
| 111 |
-
"--maxShapes=x:1x80x4096,mask:1x1x4096,mu:1x80x4096,t:1,spks:1x80,cond:1x80x4096 --verbose " + \
|
| 112 |
-
("--fp16" if args.export_half else "")
|
| 113 |
-
|
| 114 |
-
print("execute ", trtexec_cmd)
|
| 115 |
-
|
| 116 |
-
os.system(trtexec_cmd)
|
| 117 |
-
|
| 118 |
-
# print("x.shape", x.shape)
|
| 119 |
-
# print("mask.shape", mask.shape)
|
| 120 |
-
# print("mu.shape", mu.shape)
|
| 121 |
-
# print("t.shape", t.shape)
|
| 122 |
-
# print("spks.shape", spks.shape)
|
| 123 |
-
# print("cond.shape", cond.shape)
|
| 124 |
-
|
| 125 |
-
if __name__ == "__main__":
|
| 126 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cosyvoice/cli/cosyvoice.py
CHANGED
|
@@ -21,7 +21,7 @@ from cosyvoice.utils.file_utils import logging
|
|
| 21 |
|
| 22 |
class CosyVoice:
|
| 23 |
|
| 24 |
-
def __init__(self, model_dir, load_jit=True, load_trt=True, use_fp16=False):
|
| 25 |
instruct = True if '-Instruct' in model_dir else False
|
| 26 |
self.model_dir = model_dir
|
| 27 |
if not os.path.exists(model_dir):
|
|
@@ -39,13 +39,16 @@ class CosyVoice:
|
|
| 39 |
self.model.load('{}/llm.pt'.format(model_dir),
|
| 40 |
'{}/flow.pt'.format(model_dir),
|
| 41 |
'{}/hift.pt'.format(model_dir))
|
| 42 |
-
|
| 43 |
if load_jit:
|
| 44 |
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
|
| 45 |
'{}/llm.llm.fp16.zip'.format(model_dir))
|
| 46 |
|
| 47 |
-
if load_trt:
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
del configs
|
| 51 |
|
|
|
|
| 21 |
|
| 22 |
class CosyVoice:
|
| 23 |
|
| 24 |
+
def __init__(self, model_dir, load_jit=True, load_trt=False, load_onnx=True, use_fp16=False):
|
| 25 |
instruct = True if '-Instruct' in model_dir else False
|
| 26 |
self.model_dir = model_dir
|
| 27 |
if not os.path.exists(model_dir):
|
|
|
|
| 39 |
self.model.load('{}/llm.pt'.format(model_dir),
|
| 40 |
'{}/flow.pt'.format(model_dir),
|
| 41 |
'{}/hift.pt'.format(model_dir))
|
| 42 |
+
|
| 43 |
if load_jit:
|
| 44 |
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
|
| 45 |
'{}/llm.llm.fp16.zip'.format(model_dir))
|
| 46 |
|
| 47 |
+
# if load_trt:
|
| 48 |
+
# self.model.load_trt(model_dir, use_fp16)
|
| 49 |
+
|
| 50 |
+
if load_onnx:
|
| 51 |
+
self.model.load_onnx(model_dir, use_fp16)
|
| 52 |
|
| 53 |
del configs
|
| 54 |
|
cosyvoice/cli/model.py
CHANGED
|
@@ -19,6 +19,13 @@ import time
|
|
| 19 |
from contextlib import nullcontext
|
| 20 |
import uuid
|
| 21 |
from cosyvoice.utils.common import fade_in_out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
class CosyVoiceModel:
|
| 24 |
|
|
@@ -66,21 +73,40 @@ class CosyVoiceModel:
|
|
| 66 |
llm_llm = torch.jit.load(llm_llm_model)
|
| 67 |
self.llm.llm = llm_llm
|
| 68 |
|
| 69 |
-
def load_trt(self, model_dir, use_fp16):
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
with open(trt_file_path, 'rb') as f:
|
| 80 |
-
serialized_engine = f.read()
|
| 81 |
-
engine = runtime.deserialize_cuda_engine(serialized_engine)
|
| 82 |
-
self.flow.decoder.estimator_context = engine.create_execution_context()
|
| 83 |
self.flow.decoder.estimator = None
|
|
|
|
| 84 |
|
| 85 |
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
| 86 |
with self.llm_context:
|
|
|
|
| 19 |
from contextlib import nullcontext
|
| 20 |
import uuid
|
| 21 |
from cosyvoice.utils.common import fade_in_out
|
| 22 |
+
import numpy as np
|
| 23 |
+
import onnxruntime as ort
|
| 24 |
+
|
| 25 |
+
# try:
|
| 26 |
+
# import tensorrt as trt
|
| 27 |
+
# except ImportError:
|
| 28 |
+
# ...
|
| 29 |
|
| 30 |
class CosyVoiceModel:
|
| 31 |
|
|
|
|
| 73 |
llm_llm = torch.jit.load(llm_llm_model)
|
| 74 |
self.llm.llm = llm_llm
|
| 75 |
|
| 76 |
+
# def load_trt(self, model_dir, use_fp16):
|
| 77 |
+
# trt_file_name = 'estimator_fp16.plan' if use_fp16 else 'estimator_fp32.plan'
|
| 78 |
+
# trt_file_path = os.path.join(model_dir, trt_file_name)
|
| 79 |
+
# if not os.path.isfile(trt_file_path):
|
| 80 |
+
# raise f"{trt_file_path} does not exist. Please use bin/export_trt.py to generate .plan file"
|
| 81 |
+
|
| 82 |
+
# trt.init_libnvinfer_plugins(None, "")
|
| 83 |
+
# logger = trt.Logger(trt.Logger.WARNING)
|
| 84 |
+
# runtime = trt.Runtime(logger)
|
| 85 |
+
# with open(trt_file_path, 'rb') as f:
|
| 86 |
+
# serialized_engine = f.read()
|
| 87 |
+
# engine = runtime.deserialize_cuda_engine(serialized_engine)
|
| 88 |
+
# self.flow.decoder.estimator_context = engine.create_execution_context()
|
| 89 |
+
# self.flow.decoder.estimator = None
|
| 90 |
+
|
| 91 |
+
def load_onnx(self, model_dir, use_fp16):
|
| 92 |
+
onnx_file_name = 'estimator_fp16.onnx' if use_fp16 else 'estimator_fp32.onnx'
|
| 93 |
+
onnx_file_path = os.path.join(model_dir, onnx_file_name)
|
| 94 |
+
if not os.path.isfile(onnx_file_path):
|
| 95 |
+
raise f"{onnx_file_path} does not exist. Please use bin/export_trt.py to generate .onnx file"
|
| 96 |
+
|
| 97 |
+
providers = ['CUDAExecutionProvider']
|
| 98 |
+
sess_options = ort.SessionOptions()
|
| 99 |
+
|
| 100 |
+
# Add TensorRT Execution Provider
|
| 101 |
+
providers = [
|
| 102 |
+
'CUDAExecutionProvider'
|
| 103 |
+
]
|
| 104 |
|
| 105 |
+
# Load the ONNX model
|
| 106 |
+
self.flow.decoder.session = ort.InferenceSession(onnx_file_path, sess_options=sess_options, providers=providers)
|
| 107 |
+
# self.flow.decoder.estimator_context = None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
self.flow.decoder.estimator = None
|
| 109 |
+
|
| 110 |
|
| 111 |
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
| 112 |
with self.llm_context:
|
cosyvoice/flow/flow_matching.py
CHANGED
|
@@ -14,6 +14,8 @@
|
|
| 14 |
import torch
|
| 15 |
import torch.nn.functional as F
|
| 16 |
from matcha.models.components.flow_matching import BASECFM
|
|
|
|
|
|
|
| 17 |
|
| 18 |
class ConditionalCFM(BASECFM):
|
| 19 |
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
|
@@ -29,6 +31,8 @@ class ConditionalCFM(BASECFM):
|
|
| 29 |
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
|
| 30 |
# Just change the architecture of the estimator here
|
| 31 |
self.estimator = estimator
|
|
|
|
|
|
|
| 32 |
|
| 33 |
@torch.inference_mode()
|
| 34 |
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
|
@@ -101,28 +105,47 @@ class ConditionalCFM(BASECFM):
|
|
| 101 |
|
| 102 |
if self.estimator is not None:
|
| 103 |
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
else:
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
return ret
|
| 126 |
|
| 127 |
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
| 128 |
"""Computes diffusion loss
|
|
|
|
| 14 |
import torch
|
| 15 |
import torch.nn.functional as F
|
| 16 |
from matcha.models.components.flow_matching import BASECFM
|
| 17 |
+
import onnxruntime as ort
|
| 18 |
+
import numpy as np
|
| 19 |
|
| 20 |
class ConditionalCFM(BASECFM):
|
| 21 |
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
|
|
|
| 31 |
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
|
| 32 |
# Just change the architecture of the estimator here
|
| 33 |
self.estimator = estimator
|
| 34 |
+
self.estimator_context = None # for tensorrt
|
| 35 |
+
self.session = None # for onnx
|
| 36 |
|
| 37 |
@torch.inference_mode()
|
| 38 |
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
|
|
|
| 105 |
|
| 106 |
if self.estimator is not None:
|
| 107 |
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
| 108 |
+
# elif self.estimator_context is not None:
|
| 109 |
+
# assert self.training is False, 'tensorrt cannot be used in training'
|
| 110 |
+
# bs = x.shape[0]
|
| 111 |
+
# hs = x.shape[1]
|
| 112 |
+
# seq_len = x.shape[2]
|
| 113 |
+
# # assert bs == 1 and hs == 80
|
| 114 |
+
# ret = torch.empty_like(x)
|
| 115 |
+
# self.estimator_context.set_input_shape("x", x.shape)
|
| 116 |
+
# self.estimator_context.set_input_shape("mask", mask.shape)
|
| 117 |
+
# self.estimator_context.set_input_shape("mu", mu.shape)
|
| 118 |
+
# self.estimator_context.set_input_shape("t", t.shape)
|
| 119 |
+
# self.estimator_context.set_input_shape("spks", spks.shape)
|
| 120 |
+
# self.estimator_context.set_input_shape("cond", cond.shape)
|
| 121 |
+
|
| 122 |
+
# # Create a list of bindings
|
| 123 |
+
# bindings = [int(x.data_ptr()), int(mask.data_ptr()), int(mu.data_ptr()), int(t.data_ptr()), int(spks.data_ptr()), int(cond.data_ptr()), int(ret.data_ptr())]
|
| 124 |
+
|
| 125 |
+
# # Execute the inference
|
| 126 |
+
# self.estimator_context.execute_v2(bindings=bindings)
|
| 127 |
+
# return ret
|
| 128 |
else:
|
| 129 |
+
x_np = x.cpu().numpy()
|
| 130 |
+
mask_np = mask.cpu().numpy()
|
| 131 |
+
mu_np = mu.cpu().numpy()
|
| 132 |
+
t_np = t.cpu().numpy()
|
| 133 |
+
spks_np = spks.cpu().numpy()
|
| 134 |
+
cond_np = cond.cpu().numpy()
|
| 135 |
+
|
| 136 |
+
ort_inputs = {
|
| 137 |
+
'x': x_np,
|
| 138 |
+
'mask': mask_np,
|
| 139 |
+
'mu': mu_np,
|
| 140 |
+
't': t_np,
|
| 141 |
+
'spks': spks_np,
|
| 142 |
+
'cond': cond_np
|
| 143 |
+
}
|
| 144 |
+
|
| 145 |
+
output = self.session.run(None, ort_inputs)[0]
|
| 146 |
+
|
| 147 |
+
return torch.tensor(output, dtype=x.dtype, device=x.device)
|
| 148 |
+
|
|
|
|
| 149 |
|
| 150 |
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
| 151 |
"""Computes diffusion loss
|