File size: 26,591 Bytes
d6afe5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
import logging
from typing import Optional, Tuple
from urllib.parse import urlparse

import grpc
from open_webui.config import (
    QDRANT_API_KEY,
    QDRANT_GRPC_PORT,
    QDRANT_ON_DISK,
    QDRANT_PREFER_GRPC,
    QDRANT_URI,
)
from open_webui.env import SRC_LOG_LEVELS
from open_webui.retrieval.vector.main import (
    GetResult,
    SearchResult,
    VectorDBBase,
    VectorItem,
)
from qdrant_client import QdrantClient as Qclient
from qdrant_client.http.exceptions import UnexpectedResponse
from qdrant_client.http.models import PointStruct
from qdrant_client.models import models

NO_LIMIT = 999999999

log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])


class QdrantClient(VectorDBBase):
    def __init__(self):
        self.collection_prefix = "open-webui"
        self.QDRANT_URI = QDRANT_URI
        self.QDRANT_API_KEY = QDRANT_API_KEY
        self.QDRANT_ON_DISK = QDRANT_ON_DISK
        self.PREFER_GRPC = QDRANT_PREFER_GRPC
        self.GRPC_PORT = QDRANT_GRPC_PORT

        if not self.QDRANT_URI:
            self.client = None
            return

        # Unified handling for either scheme
        parsed = urlparse(self.QDRANT_URI)
        host = parsed.hostname or self.QDRANT_URI
        http_port = parsed.port or 6333  # default REST port

        if self.PREFER_GRPC:
            self.client = Qclient(
                host=host,
                port=http_port,
                grpc_port=self.GRPC_PORT,
                prefer_grpc=self.PREFER_GRPC,
                api_key=self.QDRANT_API_KEY,
            )
        else:
            self.client = Qclient(url=self.QDRANT_URI, api_key=self.QDRANT_API_KEY)

        # Main collection types for multi-tenancy
        self.MEMORY_COLLECTION = f"{self.collection_prefix}_memories"
        self.KNOWLEDGE_COLLECTION = f"{self.collection_prefix}_knowledge"
        self.FILE_COLLECTION = f"{self.collection_prefix}_files"
        self.WEB_SEARCH_COLLECTION = f"{self.collection_prefix}_web-search"
        self.HASH_BASED_COLLECTION = f"{self.collection_prefix}_hash-based"

    def _result_to_get_result(self, points) -> GetResult:
        ids = []
        documents = []
        metadatas = []

        for point in points:
            payload = point.payload
            ids.append(point.id)
            documents.append(payload["text"])
            metadatas.append(payload["metadata"])

        return GetResult(
            **{
                "ids": [ids],
                "documents": [documents],
                "metadatas": [metadatas],
            }
        )

    def _get_collection_and_tenant_id(self, collection_name: str) -> Tuple[str, str]:
        """
        Maps the traditional collection name to multi-tenant collection and tenant ID.

        Returns:
            tuple: (collection_name, tenant_id)
        """
        # Check for user memory collections
        tenant_id = collection_name

        if collection_name.startswith("user-memory-"):
            return self.MEMORY_COLLECTION, tenant_id

        # Check for file collections
        elif collection_name.startswith("file-"):
            return self.FILE_COLLECTION, tenant_id

        # Check for web search collections
        elif collection_name.startswith("web-search-"):
            return self.WEB_SEARCH_COLLECTION, tenant_id

        # Handle hash-based collections (YouTube and web URLs)
        elif len(collection_name) == 63 and all(
            c in "0123456789abcdef" for c in collection_name
        ):
            return self.HASH_BASED_COLLECTION, tenant_id

        else:
            return self.KNOWLEDGE_COLLECTION, tenant_id

    def _extract_error_message(self, exception):
        """
        Extract error message from either HTTP or gRPC exceptions

        Returns:
            tuple: (status_code, error_message)
        """
        # Check if it's an HTTP exception
        if isinstance(exception, UnexpectedResponse):
            try:
                error_data = exception.structured()
                error_msg = error_data.get("status", {}).get("error", "")
                return exception.status_code, error_msg
            except Exception as inner_e:
                log.error(f"Failed to parse HTTP error: {inner_e}")
                return exception.status_code, str(exception)

        # Check if it's a gRPC exception
        elif isinstance(exception, grpc.RpcError):
            # Extract status code from gRPC error
            status_code = None
            if hasattr(exception, "code") and callable(exception.code):
                status_code = exception.code().value[0]

            # Extract error message
            error_msg = str(exception)
            if "details =" in error_msg:
                # Parse the details line which contains the actual error message
                try:
                    details_line = [
                        line.strip()
                        for line in error_msg.split("\n")
                        if "details =" in line
                    ][0]
                    error_msg = details_line.split("details =")[1].strip(' "')
                except (IndexError, AttributeError):
                    # Fall back to full message if parsing fails
                    pass

            return status_code, error_msg

        # For any other type of exception
        return None, str(exception)

    def _is_collection_not_found_error(self, exception):
        """
        Check if the exception is due to collection not found, supporting both HTTP and gRPC
        """
        status_code, error_msg = self._extract_error_message(exception)

        # HTTP error (404)
        if (
            status_code == 404
            and "Collection" in error_msg
            and "doesn't exist" in error_msg
        ):
            return True

        # gRPC error (NOT_FOUND status)
        if (
            isinstance(exception, grpc.RpcError)
            and exception.code() == grpc.StatusCode.NOT_FOUND
        ):
            return True

        return False

    def _is_dimension_mismatch_error(self, exception):
        """
        Check if the exception is due to dimension mismatch, supporting both HTTP and gRPC
        """
        status_code, error_msg = self._extract_error_message(exception)

        # Common patterns in both HTTP and gRPC
        return (
            "Vector dimension error" in error_msg
            or "dimensions mismatch" in error_msg
            or "invalid vector size" in error_msg
        )

    def _create_multi_tenant_collection_if_not_exists(
        self, mt_collection_name: str, dimension: int = 384
    ):
        """
        Creates a collection with multi-tenancy configuration if it doesn't exist.
        Default dimension is set to 384 which corresponds to 'sentence-transformers/all-MiniLM-L6-v2'.
        When creating collections dynamically (insert/upsert), the actual vector dimensions will be used.
        """
        try:
            # Try to create the collection directly - will fail if it already exists
            self.client.create_collection(
                collection_name=mt_collection_name,
                vectors_config=models.VectorParams(
                    size=dimension,
                    distance=models.Distance.COSINE,
                    on_disk=self.QDRANT_ON_DISK,
                ),
                hnsw_config=models.HnswConfigDiff(
                    payload_m=16,  # Enable per-tenant indexing
                    m=0,
                    on_disk=self.QDRANT_ON_DISK,
                ),
            )

            # Create tenant ID payload index
            self.client.create_payload_index(
                collection_name=mt_collection_name,
                field_name="tenant_id",
                field_schema=models.KeywordIndexParams(
                    type=models.KeywordIndexType.KEYWORD,
                    is_tenant=True,
                    on_disk=self.QDRANT_ON_DISK,
                ),
                wait=True,
            )

            log.info(
                f"Multi-tenant collection {mt_collection_name} created with dimension {dimension}!"
            )
        except (UnexpectedResponse, grpc.RpcError) as e:
            # Check for the specific error indicating collection already exists
            status_code, error_msg = self._extract_error_message(e)

            # HTTP status code 409 or gRPC ALREADY_EXISTS
            if (isinstance(e, UnexpectedResponse) and status_code == 409) or (
                isinstance(e, grpc.RpcError)
                and e.code() == grpc.StatusCode.ALREADY_EXISTS
            ):
                if "already exists" in error_msg:
                    log.debug(f"Collection {mt_collection_name} already exists")
                    return
            # If it's not an already exists error, re-raise
            raise e
        except Exception as e:
            raise e

    def _create_points(self, items: list[VectorItem], tenant_id: str):
        """
        Create point structs from vector items with tenant ID.
        """
        return [
            PointStruct(
                id=item["id"],
                vector=item["vector"],
                payload={
                    "text": item["text"],
                    "metadata": item["metadata"],
                    "tenant_id": tenant_id,
                },
            )
            for item in items
        ]

    def has_collection(self, collection_name: str) -> bool:
        """
        Check if a logical collection exists by checking for any points with the tenant ID.
        """
        if not self.client:
            return False

        # Map to multi-tenant collection and tenant ID
        mt_collection, tenant_id = self._get_collection_and_tenant_id(collection_name)

        # Create tenant filter
        tenant_filter = models.FieldCondition(
            key="tenant_id", match=models.MatchValue(value=tenant_id)
        )

        try:
            # Try directly querying - most of the time collection should exist
            response = self.client.query_points(
                collection_name=mt_collection,
                query_filter=models.Filter(must=[tenant_filter]),
                limit=1,
            )

            # Collection exists with this tenant ID if there are points
            return len(response.points) > 0
        except (UnexpectedResponse, grpc.RpcError) as e:
            if self._is_collection_not_found_error(e):
                log.debug(f"Collection {mt_collection} doesn't exist")
                return False
            else:
                # For other API errors, log and return False
                _, error_msg = self._extract_error_message(e)
                log.warning(f"Unexpected Qdrant error: {error_msg}")
                return False
        except Exception as e:
            # For any other errors, log and return False
            log.debug(f"Error checking collection {mt_collection}: {e}")
            return False

    def delete(
        self,
        collection_name: str,
        ids: Optional[list[str]] = None,
        filter: Optional[dict] = None,
    ):
        """
        Delete vectors by ID or filter from a collection with tenant isolation.
        """
        if not self.client:
            return None

        # Map to multi-tenant collection and tenant ID
        mt_collection, tenant_id = self._get_collection_and_tenant_id(collection_name)

        # Create tenant filter
        tenant_filter = models.FieldCondition(
            key="tenant_id", match=models.MatchValue(value=tenant_id)
        )

        must_conditions = [tenant_filter]
        should_conditions = []

        if ids:
            for id_value in ids:
                should_conditions.append(
                    models.FieldCondition(
                        key="metadata.id",
                        match=models.MatchValue(value=id_value),
                    ),
                )
        elif filter:
            for key, value in filter.items():
                must_conditions.append(
                    models.FieldCondition(
                        key=f"metadata.{key}",
                        match=models.MatchValue(value=value),
                    ),
                )

        try:
            # Try to delete directly - most of the time collection should exist
            update_result = self.client.delete(
                collection_name=mt_collection,
                points_selector=models.FilterSelector(
                    filter=models.Filter(must=must_conditions, should=should_conditions)
                ),
            )

            return update_result
        except (UnexpectedResponse, grpc.RpcError) as e:
            if self._is_collection_not_found_error(e):
                log.debug(
                    f"Collection {mt_collection} doesn't exist, nothing to delete"
                )
                return None
            else:
                # For other API errors, log and re-raise
                _, error_msg = self._extract_error_message(e)
                log.warning(f"Unexpected Qdrant error: {error_msg}")
                raise
        except Exception as e:
            # For non-Qdrant exceptions, re-raise
            raise

    def search(
        self, collection_name: str, vectors: list[list[float | int]], limit: int
    ) -> Optional[SearchResult]:
        """
        Search for the nearest neighbor items based on the vectors with tenant isolation.
        """
        if not self.client:
            return None

        # Map to multi-tenant collection and tenant ID
        mt_collection, tenant_id = self._get_collection_and_tenant_id(collection_name)

        # Get the vector dimension from the query vector
        dimension = len(vectors[0]) if vectors and len(vectors) > 0 else None

        try:
            # Try the search operation directly - most of the time collection should exist

            # Create tenant filter
            tenant_filter = models.FieldCondition(
                key="tenant_id", match=models.MatchValue(value=tenant_id)
            )

            # Ensure vector dimensions match the collection
            collection_dim = self.client.get_collection(
                mt_collection
            ).config.params.vectors.size

            if collection_dim != dimension:
                if collection_dim < dimension:
                    vectors = [vector[:collection_dim] for vector in vectors]
                else:
                    vectors = [
                        vector + [0] * (collection_dim - dimension)
                        for vector in vectors
                    ]

            # Search with tenant filter
            prefetch_query = models.Prefetch(
                filter=models.Filter(must=[tenant_filter]),
                limit=NO_LIMIT,
            )
            query_response = self.client.query_points(
                collection_name=mt_collection,
                query=vectors[0],
                prefetch=prefetch_query,
                limit=limit,
            )

            get_result = self._result_to_get_result(query_response.points)
            return SearchResult(
                ids=get_result.ids,
                documents=get_result.documents,
                metadatas=get_result.metadatas,
                # qdrant distance is [-1, 1], normalize to [0, 1]
                distances=[
                    [(point.score + 1.0) / 2.0 for point in query_response.points]
                ],
            )
        except (UnexpectedResponse, grpc.RpcError) as e:
            if self._is_collection_not_found_error(e):
                log.debug(
                    f"Collection {mt_collection} doesn't exist, search returns None"
                )
                return None
            else:
                # For other API errors, log and re-raise
                _, error_msg = self._extract_error_message(e)
                log.warning(f"Unexpected Qdrant error during search: {error_msg}")
                raise
        except Exception as e:
            # For non-Qdrant exceptions, log and return None
            log.exception(f"Error searching collection '{collection_name}': {e}")
            return None

    def query(self, collection_name: str, filter: dict, limit: Optional[int] = None):
        """
        Query points with filters and tenant isolation.
        """
        if not self.client:
            return None

        # Map to multi-tenant collection and tenant ID
        mt_collection, tenant_id = self._get_collection_and_tenant_id(collection_name)

        # Set default limit if not provided
        if limit is None:
            limit = NO_LIMIT

        # Create tenant filter
        tenant_filter = models.FieldCondition(
            key="tenant_id", match=models.MatchValue(value=tenant_id)
        )

        # Create metadata filters
        field_conditions = []
        for key, value in filter.items():
            field_conditions.append(
                models.FieldCondition(
                    key=f"metadata.{key}", match=models.MatchValue(value=value)
                )
            )

        # Combine tenant filter with metadata filters
        combined_filter = models.Filter(must=[tenant_filter, *field_conditions])

        try:
            # Try the query directly - most of the time collection should exist
            points = self.client.query_points(
                collection_name=mt_collection,
                query_filter=combined_filter,
                limit=limit,
            )

            return self._result_to_get_result(points.points)
        except (UnexpectedResponse, grpc.RpcError) as e:
            if self._is_collection_not_found_error(e):
                log.debug(
                    f"Collection {mt_collection} doesn't exist, query returns None"
                )
                return None
            else:
                # For other API errors, log and re-raise
                _, error_msg = self._extract_error_message(e)
                log.warning(f"Unexpected Qdrant error during query: {error_msg}")
                raise
        except Exception as e:
            # For non-Qdrant exceptions, log and re-raise
            log.exception(f"Error querying collection '{collection_name}': {e}")
            return None

    def get(self, collection_name: str) -> Optional[GetResult]:
        """
        Get all items in a collection with tenant isolation.
        """
        if not self.client:
            return None

        # Map to multi-tenant collection and tenant ID
        mt_collection, tenant_id = self._get_collection_and_tenant_id(collection_name)

        # Create tenant filter
        tenant_filter = models.FieldCondition(
            key="tenant_id", match=models.MatchValue(value=tenant_id)
        )

        try:
            # Try to get points directly - most of the time collection should exist
            points = self.client.query_points(
                collection_name=mt_collection,
                query_filter=models.Filter(must=[tenant_filter]),
                limit=NO_LIMIT,
            )

            return self._result_to_get_result(points.points)
        except (UnexpectedResponse, grpc.RpcError) as e:
            if self._is_collection_not_found_error(e):
                log.debug(f"Collection {mt_collection} doesn't exist, get returns None")
                return None
            else:
                # For other API errors, log and re-raise
                _, error_msg = self._extract_error_message(e)
                log.warning(f"Unexpected Qdrant error during get: {error_msg}")
                raise
        except Exception as e:
            # For non-Qdrant exceptions, log and return None
            log.exception(f"Error getting collection '{collection_name}': {e}")
            return None

    def _handle_operation_with_error_retry(
        self, operation_name, mt_collection, points, dimension
    ):
        """
        Private helper to handle common error cases for insert and upsert operations.

        Args:
            operation_name: 'insert' or 'upsert'
            mt_collection: The multi-tenant collection name
            points: The vector points to insert/upsert
            dimension: The dimension of the vectors

        Returns:
            The operation result (for upsert) or None (for insert)
        """
        try:
            if operation_name == "insert":
                self.client.upload_points(mt_collection, points)
                return None
            else:  # upsert
                return self.client.upsert(mt_collection, points)
        except (UnexpectedResponse, grpc.RpcError) as e:
            # Handle collection not found
            if self._is_collection_not_found_error(e):
                log.info(
                    f"Collection {mt_collection} doesn't exist. Creating it with dimension {dimension}."
                )
                # Create collection with correct dimensions from our vectors
                self._create_multi_tenant_collection_if_not_exists(
                    mt_collection_name=mt_collection, dimension=dimension
                )
                # Try operation again - no need for dimension adjustment since we just created with correct dimensions
                if operation_name == "insert":
                    self.client.upload_points(mt_collection, points)
                    return None
                else:  # upsert
                    return self.client.upsert(mt_collection, points)

            # Handle dimension mismatch
            elif self._is_dimension_mismatch_error(e):
                # For dimension errors, the collection must exist, so get its configuration
                mt_collection_info = self.client.get_collection(mt_collection)
                existing_size = mt_collection_info.config.params.vectors.size

                log.info(
                    f"Dimension mismatch: Collection {mt_collection} expects {existing_size}, got {dimension}"
                )

                if existing_size < dimension:
                    # Truncate vectors to fit
                    log.info(
                        f"Truncating vectors from {dimension} to {existing_size} dimensions"
                    )
                    points = [
                        PointStruct(
                            id=point.id,
                            vector=point.vector[:existing_size],
                            payload=point.payload,
                        )
                        for point in points
                    ]
                elif existing_size > dimension:
                    # Pad vectors with zeros
                    log.info(
                        f"Padding vectors from {dimension} to {existing_size} dimensions with zeros"
                    )
                    points = [
                        PointStruct(
                            id=point.id,
                            vector=point.vector
                            + [0] * (existing_size - len(point.vector)),
                            payload=point.payload,
                        )
                        for point in points
                    ]
                # Try operation again with adjusted dimensions
                if operation_name == "insert":
                    self.client.upload_points(mt_collection, points)
                    return None
                else:  # upsert
                    return self.client.upsert(mt_collection, points)
            else:
                # Not a known error we can handle, log and re-raise
                _, error_msg = self._extract_error_message(e)
                log.warning(f"Unhandled Qdrant error: {error_msg}")
                raise
        except Exception as e:
            # For non-Qdrant exceptions, re-raise
            raise

    def insert(self, collection_name: str, items: list[VectorItem]):
        """
        Insert items with tenant ID.
        """
        if not self.client or not items:
            return None

        # Map to multi-tenant collection and tenant ID
        mt_collection, tenant_id = self._get_collection_and_tenant_id(collection_name)

        # Get dimensions from the actual vectors
        dimension = len(items[0]["vector"]) if items else None

        # Create points with tenant ID
        points = self._create_points(items, tenant_id)

        # Handle the operation with error retry
        return self._handle_operation_with_error_retry(
            "insert", mt_collection, points, dimension
        )

    def upsert(self, collection_name: str, items: list[VectorItem]):
        """
        Upsert items with tenant ID.
        """
        if not self.client or not items:
            return None

        # Map to multi-tenant collection and tenant ID
        mt_collection, tenant_id = self._get_collection_and_tenant_id(collection_name)

        # Get dimensions from the actual vectors
        dimension = len(items[0]["vector"]) if items else None

        # Create points with tenant ID
        points = self._create_points(items, tenant_id)

        # Handle the operation with error retry
        return self._handle_operation_with_error_retry(
            "upsert", mt_collection, points, dimension
        )

    def reset(self):
        """
        Reset the database by deleting all collections.
        """
        if not self.client:
            return None

        collection_names = self.client.get_collections().collections
        for collection_name in collection_names:
            if collection_name.name.startswith(self.collection_prefix):
                self.client.delete_collection(collection_name=collection_name.name)

    def delete_collection(self, collection_name: str):
        """
        Delete a collection.
        """
        if not self.client:
            return None

        # Map to multi-tenant collection and tenant ID
        mt_collection, tenant_id = self._get_collection_and_tenant_id(collection_name)

        tenant_filter = models.FieldCondition(
            key="tenant_id", match=models.MatchValue(value=tenant_id)
        )

        field_conditions = [tenant_filter]

        update_result = self.client.delete(
            collection_name=mt_collection,
            points_selector=models.FilterSelector(
                filter=models.Filter(must=field_conditions)
            ),
        )

        if self.client.get_collection(mt_collection).points_count == 0:
            self.client.delete_collection(mt_collection)

        return update_result