Spaces:
Sleeping
Sleeping
Upload openvino_pipe.py
Browse files- openvino_pipe.py +273 -0
openvino_pipe.py
ADDED
|
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# origin: https://github.com/intel/openvino-ai-plugins-gimp/blob/ae93e7291fab6d372c958da18e497acb9d927055/gimpopenvino/tools/openvino_common/models_ov/stable_diffusion_engine.py#L748
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
from typing import Union, Optional, Any, List, Dict
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from openvino.runtime import Core
|
| 8 |
+
from diffusers import DiffusionPipeline, LCMScheduler, ImagePipelineOutput
|
| 9 |
+
from diffusers.image_processor import VaeImageProcessor
|
| 10 |
+
from transformers import CLIPTokenizer
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class LatentConsistencyEngine(DiffusionPipeline):
|
| 14 |
+
def __init__(
|
| 15 |
+
self,
|
| 16 |
+
model="SimianLuo/LCM_Dreamshaper_v7",
|
| 17 |
+
tokenizer="openai/clip-vit-large-patch14",
|
| 18 |
+
device=["CPU", "CPU", "CPU"],
|
| 19 |
+
):
|
| 20 |
+
super().__init__()
|
| 21 |
+
try:
|
| 22 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(model, local_files_only=True)
|
| 23 |
+
except:
|
| 24 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer)
|
| 25 |
+
self.tokenizer.save_pretrained(model)
|
| 26 |
+
|
| 27 |
+
self.core = Core()
|
| 28 |
+
self.core.set_property({'CACHE_DIR': os.path.join(model, 'cache')}) # adding caching to reduce init time
|
| 29 |
+
# text features
|
| 30 |
+
|
| 31 |
+
print("Text Device:", device[0])
|
| 32 |
+
self.text_encoder = self.core.compile_model(os.path.join(model, "text_encoder.xml"), device[0])
|
| 33 |
+
self._text_encoder_output = self.text_encoder.output(0)
|
| 34 |
+
|
| 35 |
+
# diffusion
|
| 36 |
+
print("unet Device:", device[1])
|
| 37 |
+
self.unet = self.core.compile_model(os.path.join(model, "unet.xml"), device[1])
|
| 38 |
+
self._unet_output = self.unet.output(0)
|
| 39 |
+
self.infer_request = self.unet.create_infer_request()
|
| 40 |
+
|
| 41 |
+
# decoder
|
| 42 |
+
print("Vae Device:", device[2])
|
| 43 |
+
|
| 44 |
+
self.vae_decoder = self.core.compile_model(os.path.join(model, "vae_decoder.xml"), device[2])
|
| 45 |
+
self.infer_request_vae = self.vae_decoder.create_infer_request()
|
| 46 |
+
self.safety_checker = None #pipe.safety_checker
|
| 47 |
+
self.feature_extractor = None #pipe.feature_extractor
|
| 48 |
+
self.vae_scale_factor = 2 ** 3
|
| 49 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 50 |
+
self.scheduler = LCMScheduler(
|
| 51 |
+
beta_start=0.00085,
|
| 52 |
+
beta_end=0.012,
|
| 53 |
+
beta_schedule="scaled_linear"
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
def _encode_prompt(
|
| 57 |
+
self,
|
| 58 |
+
prompt,
|
| 59 |
+
num_images_per_prompt,
|
| 60 |
+
prompt_embeds: None,
|
| 61 |
+
):
|
| 62 |
+
r"""
|
| 63 |
+
Encodes the prompt into text encoder hidden states.
|
| 64 |
+
Args:
|
| 65 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 66 |
+
prompt to be encoded
|
| 67 |
+
num_images_per_prompt (`int`):
|
| 68 |
+
number of images that should be generated per prompt
|
| 69 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 70 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 71 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
if prompt_embeds is None:
|
| 75 |
+
|
| 76 |
+
text_inputs = self.tokenizer(
|
| 77 |
+
prompt,
|
| 78 |
+
padding="max_length",
|
| 79 |
+
max_length=self.tokenizer.model_max_length,
|
| 80 |
+
truncation=True,
|
| 81 |
+
return_tensors="pt",
|
| 82 |
+
)
|
| 83 |
+
text_input_ids = text_inputs.input_ids
|
| 84 |
+
untruncated_ids = self.tokenizer(
|
| 85 |
+
prompt, padding="longest", return_tensors="pt"
|
| 86 |
+
).input_ids
|
| 87 |
+
|
| 88 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[
|
| 89 |
+
-1
|
| 90 |
+
] and not torch.equal(text_input_ids, untruncated_ids):
|
| 91 |
+
removed_text = self.tokenizer.batch_decode(
|
| 92 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
prompt_embeds = self.text_encoder(text_input_ids, share_inputs=True, share_outputs=True)
|
| 96 |
+
prompt_embeds = torch.from_numpy(prompt_embeds[0])
|
| 97 |
+
|
| 98 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 99 |
+
# duplicate text embeddings for each generation per prompt
|
| 100 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 101 |
+
prompt_embeds = prompt_embeds.view(
|
| 102 |
+
bs_embed * num_images_per_prompt, seq_len, -1
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
# Don't need to get uncond prompt embedding because of LCM Guided Distillation
|
| 106 |
+
return prompt_embeds
|
| 107 |
+
|
| 108 |
+
def run_safety_checker(self, image, dtype):
|
| 109 |
+
if self.safety_checker is None:
|
| 110 |
+
has_nsfw_concept = None
|
| 111 |
+
else:
|
| 112 |
+
if torch.is_tensor(image):
|
| 113 |
+
feature_extractor_input = self.image_processor.postprocess(
|
| 114 |
+
image, output_type="pil"
|
| 115 |
+
)
|
| 116 |
+
else:
|
| 117 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
| 118 |
+
safety_checker_input = self.feature_extractor(
|
| 119 |
+
feature_extractor_input, return_tensors="pt"
|
| 120 |
+
)
|
| 121 |
+
image, has_nsfw_concept = self.safety_checker(
|
| 122 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
| 123 |
+
)
|
| 124 |
+
return image, has_nsfw_concept
|
| 125 |
+
|
| 126 |
+
def prepare_latents(
|
| 127 |
+
self, batch_size, num_channels_latents, height, width, dtype, latents=None
|
| 128 |
+
):
|
| 129 |
+
shape = (
|
| 130 |
+
batch_size,
|
| 131 |
+
num_channels_latents,
|
| 132 |
+
height // self.vae_scale_factor,
|
| 133 |
+
width // self.vae_scale_factor,
|
| 134 |
+
)
|
| 135 |
+
if latents is None:
|
| 136 |
+
latents = torch.randn(shape, dtype=dtype)
|
| 137 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 138 |
+
return latents
|
| 139 |
+
|
| 140 |
+
def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
| 141 |
+
"""
|
| 142 |
+
see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
| 143 |
+
Args:
|
| 144 |
+
timesteps: torch.Tensor: generate embedding vectors at these timesteps
|
| 145 |
+
embedding_dim: int: dimension of the embeddings to generate
|
| 146 |
+
dtype: data type of the generated embeddings
|
| 147 |
+
Returns:
|
| 148 |
+
embedding vectors with shape `(len(timesteps), embedding_dim)`
|
| 149 |
+
"""
|
| 150 |
+
assert len(w.shape) == 1
|
| 151 |
+
w = w * 1000.0
|
| 152 |
+
|
| 153 |
+
half_dim = embedding_dim // 2
|
| 154 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
| 155 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
| 156 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
| 157 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
| 158 |
+
if embedding_dim % 2 == 1: # zero pad
|
| 159 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
| 160 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
| 161 |
+
return emb
|
| 162 |
+
|
| 163 |
+
@torch.no_grad()
|
| 164 |
+
def __call__(
|
| 165 |
+
self,
|
| 166 |
+
prompt: Union[str, List[str]] = None,
|
| 167 |
+
height: Optional[int] = 512,
|
| 168 |
+
width: Optional[int] = 512,
|
| 169 |
+
guidance_scale: float = 7.5,
|
| 170 |
+
scheduler = None,
|
| 171 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 172 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 173 |
+
num_inference_steps: int = 4,
|
| 174 |
+
lcm_origin_steps: int = 50,
|
| 175 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 176 |
+
output_type: Optional[str] = "pil",
|
| 177 |
+
return_dict: bool = True,
|
| 178 |
+
model: Optional[Dict[str, any]] = None,
|
| 179 |
+
seed: Optional[int] = 1234567,
|
| 180 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 181 |
+
callback = None,
|
| 182 |
+
callback_userdata = None
|
| 183 |
+
):
|
| 184 |
+
|
| 185 |
+
# 1. Define call parameters
|
| 186 |
+
if prompt is not None and isinstance(prompt, str):
|
| 187 |
+
batch_size = 1
|
| 188 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 189 |
+
batch_size = len(prompt)
|
| 190 |
+
else:
|
| 191 |
+
batch_size = prompt_embeds.shape[0]
|
| 192 |
+
|
| 193 |
+
if seed is not None:
|
| 194 |
+
torch.manual_seed(seed)
|
| 195 |
+
|
| 196 |
+
#print("After Step 1: batch size is ", batch_size)
|
| 197 |
+
# do_classifier_free_guidance = guidance_scale > 0.0
|
| 198 |
+
# In LCM Implementation: cfg_noise = noise_cond + cfg_scale * (noise_cond - noise_uncond) , (cfg_scale > 0.0 using CFG)
|
| 199 |
+
|
| 200 |
+
# 2. Encode input prompt
|
| 201 |
+
prompt_embeds = self._encode_prompt(
|
| 202 |
+
prompt,
|
| 203 |
+
num_images_per_prompt,
|
| 204 |
+
prompt_embeds=prompt_embeds,
|
| 205 |
+
)
|
| 206 |
+
#print("After Step 2: prompt embeds is ", prompt_embeds)
|
| 207 |
+
#print("After Step 2: scheduler is ", scheduler )
|
| 208 |
+
# 3. Prepare timesteps
|
| 209 |
+
self.scheduler.set_timesteps(num_inference_steps, original_inference_steps=lcm_origin_steps)
|
| 210 |
+
timesteps = self.scheduler.timesteps
|
| 211 |
+
|
| 212 |
+
#print("After Step 3: timesteps is ", timesteps)
|
| 213 |
+
|
| 214 |
+
# 4. Prepare latent variable
|
| 215 |
+
num_channels_latents = 4
|
| 216 |
+
latents = self.prepare_latents(
|
| 217 |
+
batch_size * num_images_per_prompt,
|
| 218 |
+
num_channels_latents,
|
| 219 |
+
height,
|
| 220 |
+
width,
|
| 221 |
+
prompt_embeds.dtype,
|
| 222 |
+
latents,
|
| 223 |
+
)
|
| 224 |
+
latents = latents * self.scheduler.init_noise_sigma
|
| 225 |
+
|
| 226 |
+
#print("After Step 4: ")
|
| 227 |
+
bs = batch_size * num_images_per_prompt
|
| 228 |
+
|
| 229 |
+
# 5. Get Guidance Scale Embedding
|
| 230 |
+
w = torch.tensor(guidance_scale).repeat(bs)
|
| 231 |
+
w_embedding = self.get_w_embedding(w, embedding_dim=256)
|
| 232 |
+
#print("After Step 5: ")
|
| 233 |
+
# 6. LCM MultiStep Sampling Loop:
|
| 234 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 235 |
+
for i, t in enumerate(timesteps):
|
| 236 |
+
if callback:
|
| 237 |
+
callback(i+1, callback_userdata)
|
| 238 |
+
|
| 239 |
+
ts = torch.full((bs,), t, dtype=torch.long)
|
| 240 |
+
|
| 241 |
+
# model prediction (v-prediction, eps, x)
|
| 242 |
+
model_pred = self.unet([latents, ts, prompt_embeds, w_embedding],share_inputs=True, share_outputs=True)[0]
|
| 243 |
+
|
| 244 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 245 |
+
latents, denoised = self.scheduler.step(
|
| 246 |
+
torch.from_numpy(model_pred), t, latents, return_dict=False
|
| 247 |
+
)
|
| 248 |
+
progress_bar.update()
|
| 249 |
+
|
| 250 |
+
#print("After Step 6: ")
|
| 251 |
+
|
| 252 |
+
#vae_start = time.time()
|
| 253 |
+
|
| 254 |
+
if not output_type == "latent":
|
| 255 |
+
image = torch.from_numpy(self.vae_decoder(denoised / 0.18215, share_inputs=True, share_outputs=True)[0])
|
| 256 |
+
else:
|
| 257 |
+
image = denoised
|
| 258 |
+
|
| 259 |
+
#print("vae decoder done", time.time() - vae_start)
|
| 260 |
+
#post_start = time.time()
|
| 261 |
+
|
| 262 |
+
#if has_nsfw_concept is None:
|
| 263 |
+
do_denormalize = [True] * image.shape[0]
|
| 264 |
+
#else:
|
| 265 |
+
# do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
| 266 |
+
|
| 267 |
+
#print ("After do_denormalize: image is ", image)
|
| 268 |
+
|
| 269 |
+
image = self.image_processor.postprocess(
|
| 270 |
+
image, output_type=output_type, do_denormalize=do_denormalize
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
return ImagePipelineOutput([image[0]])
|