Update app.py
Browse files
app.py
CHANGED
|
@@ -1,112 +1,86 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
| 3 |
|
| 4 |
-
# Initialize the
|
| 5 |
-
|
|
|
|
| 6 |
|
| 7 |
-
def
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
placeholder="Enter comma-separated categories (e.g., happy, sad, excited, confused)",
|
| 33 |
-
lines=2,
|
| 34 |
-
elem_classes=["example-text"]
|
| 35 |
)
|
| 36 |
-
|
| 37 |
-
outputs=
|
| 38 |
-
gr.Label(label="📊 Classification Results"),
|
| 39 |
-
gr.Markdown(label="📈 Detailed Analysis", elem_classes=["markdown-text"])
|
| 40 |
-
],
|
| 41 |
-
title="🤖 Zero-Shot Text Classification with ModernBERT",
|
| 42 |
-
description="""
|
| 43 |
-
Classify any text into arbirary categories or perform natural language inference with ModernBERT
|
| 44 |
-
|
| 45 |
-
**How to use:**
|
| 46 |
-
1. Enter your text in the first box
|
| 47 |
-
2. Add comma-separated category labels in the second box
|
| 48 |
-
3. Click submit to see how your text matches each category
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
["This new phone has an amazing camera and great battery life", "technology, photography, consumer, review"],
|
| 56 |
-
["Mix flour, sugar, and eggs until well combined", "cooking, baking, instructions, food"],
|
| 57 |
-
["Scientists discovered a new species of butterfly in the Amazon", "science, nature, discovery, environment"],
|
| 58 |
-
["The team scored in the final minute to win the championship", "sports, victory, competition, excitement"],
|
| 59 |
-
["The painting uses vibrant colors to express deep emotions", "art, emotion, creativity, analysis"]
|
| 60 |
-
],
|
| 61 |
-
cache_examples=False,
|
| 62 |
-
css="""
|
| 63 |
-
footer {display:none !important}
|
| 64 |
-
.output-markdown{display:none !important}
|
| 65 |
-
.gradio-container {
|
| 66 |
-
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
|
| 67 |
-
max-width: 1200px !important;
|
| 68 |
-
}
|
| 69 |
-
.gr-button-primary {
|
| 70 |
-
background: linear-gradient(90deg, #11142D, #253885) !important;
|
| 71 |
-
border: none !important;
|
| 72 |
-
color: white !important;
|
| 73 |
-
border-radius: 12px !important;
|
| 74 |
-
transition: all 0.3s ease !important;
|
| 75 |
-
}
|
| 76 |
-
.gr-button-primary:hover {
|
| 77 |
-
transform: translateY(-2px) !important;
|
| 78 |
-
box-shadow: 0 4px 12px rgba(17, 20, 45, 0.3) !important;
|
| 79 |
-
background: linear-gradient(90deg, #253885, #4285F4) !important;
|
| 80 |
-
}
|
| 81 |
-
.gr-input, .gr-textarea {
|
| 82 |
-
border-radius: 8px !important;
|
| 83 |
-
border: 2px solid #E2E8F0 !important;
|
| 84 |
-
padding: 12px !important;
|
| 85 |
-
font-size: 16px !important;
|
| 86 |
-
}
|
| 87 |
-
.gr-input:focus, .gr-textarea:focus {
|
| 88 |
-
border-color: #253885 !important;
|
| 89 |
-
box-shadow: 0 0 0 3px rgba(37, 56, 133, 0.2) !important;
|
| 90 |
-
}
|
| 91 |
-
.gr-panel {
|
| 92 |
-
border-radius: 16px !important;
|
| 93 |
-
box-shadow: 0 4px 15px -1px rgba(0, 0, 0, 0.1) !important;
|
| 94 |
-
background: white !important;
|
| 95 |
-
}
|
| 96 |
-
.gr-box {
|
| 97 |
-
border-radius: 12px !important;
|
| 98 |
-
background: white !important;
|
| 99 |
-
}
|
| 100 |
-
.markdown-text {
|
| 101 |
-
font-size: 16px !important;
|
| 102 |
-
line-height: 1.6 !important;
|
| 103 |
-
}
|
| 104 |
-
.example-text {
|
| 105 |
-
font-family: 'Inter', sans-serif !important;
|
| 106 |
-
color: #11142D !important;
|
| 107 |
-
}
|
| 108 |
-
"""
|
| 109 |
-
)
|
| 110 |
|
| 111 |
# Launch the app
|
| 112 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
| 3 |
|
| 4 |
+
# Initialize the classifiers
|
| 5 |
+
zero_shot_classifier = pipeline("zero-shot-classification", model="tasksource/ModernBERT-base-nli")
|
| 6 |
+
nli_classifier = pipeline("text-classification", model="tasksource/ModernBERT-base-nli")
|
| 7 |
|
| 8 |
+
def process_input(text_input, labels_or_premise, mode):
|
| 9 |
+
if mode == "Zero-Shot Classification":
|
| 10 |
+
# Clean and process the labels
|
| 11 |
+
labels = [label.strip() for label in labels_or_premise.split(',')]
|
| 12 |
+
|
| 13 |
+
# Get predictions
|
| 14 |
+
prediction = zero_shot_classifier(text_input, labels)
|
| 15 |
+
results = {label: score for label, score in zip(prediction['labels'], prediction['scores'])}
|
| 16 |
+
return results, ''
|
| 17 |
|
| 18 |
+
else: # NLI mode
|
| 19 |
+
# Process as premise-hypothesis pair
|
| 20 |
+
prediction = nli_classifier([{"text": text_input, "text_pair": labels_or_premise}])
|
| 21 |
+
results = {pred['label']: pred['score'] for pred in prediction}
|
| 22 |
+
return results, ''
|
| 23 |
+
|
| 24 |
+
# Create the interface
|
| 25 |
+
with gr.Blocks() as demo:
|
| 26 |
+
gr.Markdown("# 🤖 ModernBERT Text Analysis")
|
| 27 |
|
| 28 |
+
mode = gr.Radio(
|
| 29 |
+
["Zero-Shot Classification", "Natural Language Inference"],
|
| 30 |
+
label="Select Mode",
|
| 31 |
+
value="Zero-Shot Classification"
|
| 32 |
+
)
|
| 33 |
|
| 34 |
+
with gr.Column():
|
| 35 |
+
text_input = gr.Textbox(
|
| 36 |
+
label="✍️ Input Text",
|
| 37 |
+
placeholder="Enter your text...",
|
| 38 |
+
lines=3
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
labels_or_premise = gr.Textbox(
|
| 42 |
+
label="🏷️ Categories / Premise",
|
| 43 |
+
placeholder="Enter comma-separated categories or premise text...",
|
| 44 |
+
lines=2
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
submit_btn = gr.Button("Submit")
|
| 48 |
+
|
| 49 |
+
outputs = [
|
| 50 |
+
gr.Label(label="📊 Results"),
|
| 51 |
+
gr.Markdown(label="📈 Analysis", visible=False)
|
| 52 |
+
]
|
| 53 |
|
| 54 |
+
# Different examples for each mode
|
| 55 |
+
zero_shot_examples = [
|
| 56 |
+
["I need to buy groceries", "shopping, urgent tasks, leisure, philosophy"],
|
| 57 |
+
["The sun is very bright today", "weather, astronomy, complaints, poetry"],
|
| 58 |
+
["I love playing video games", "entertainment, sports, education, business"],
|
| 59 |
+
["The car won't start", "transportation, art, cooking, literature"],
|
| 60 |
+
["She wrote a beautiful poem", "creativity, finance, exercise, technology"]
|
| 61 |
+
]
|
| 62 |
|
| 63 |
+
nli_examples = [
|
| 64 |
+
["A man is sleeping on a couch", "The man is awake"],
|
| 65 |
+
["The restaurant is full of people", "The place is empty"],
|
| 66 |
+
["The child is playing with toys", "The kid is having fun"],
|
| 67 |
+
["It's raining outside", "The weather is wet"],
|
| 68 |
+
["The dog is barking at the mailman", "There is a cat"]
|
| 69 |
+
]
|
| 70 |
+
|
| 71 |
+
def update_examples(mode_value):
|
| 72 |
+
return gr.Examples(
|
| 73 |
+
zero_shot_examples if mode_value == "Zero-Shot Classification" else nli_examples,
|
| 74 |
+
inputs=[text_input, labels_or_premise]
|
|
|
|
|
|
|
|
|
|
| 75 |
)
|
| 76 |
+
|
| 77 |
+
mode.change(fn=update_examples, inputs=[mode], outputs=gr.Examples())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
submit_btn.click(
|
| 80 |
+
fn=process_input,
|
| 81 |
+
inputs=[text_input, labels_or_premise, mode],
|
| 82 |
+
outputs=outputs
|
| 83 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
# Launch the app
|
| 86 |
if __name__ == "__main__":
|