Spaces:
Sleeping
Sleeping
File size: 11,082 Bytes
10e9b7d eccf8e4 7d65c66 620f572 3c4371f c275bbd 3164d5a 7067f57 3164d5a e80aab9 3db6293 e80aab9 3164d5a 8b49454 61401c1 c275bbd 61401c1 8b49454 61401c1 6e735ee 31243f4 61401c1 8b49454 6e735ee 61401c1 6e735ee 61401c1 6e735ee 8b49454 61401c1 8b49454 d4b02ec 4021bf3 3164d5a 31243f4 3164d5a 31243f4 3164d5a 7e4a06b 31243f4 3164d5a 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3164d5a 31243f4 3164d5a e80aab9 31243f4 7d65c66 3164d5a 31243f4 61401c1 3164d5a 61401c1 3164d5a 61401c1 3164d5a 31243f4 61401c1 3164d5a 61401c1 3164d5a 61401c1 3164d5a 61401c1 3164d5a 61401c1 e80aab9 61401c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import os
import gradio as gr
import requests
import inspect
import time
import pandas as pd
from smolagents import DuckDuckGoSearchTool
import threading
from typing import Dict, List, Optional, Tuple
import json
from huggingface_hub import InferenceClient
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Global Cache for Answers ---
cached_answers = {}
cached_questions = []
processing_status = {"is_processing": False, "progress": 0, "total": 0}
# --- Intelligent Agent with Conditional Search ---
class IntelligentAgent:
def __init__(self, debug: bool = False, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"):
self.search = DuckDuckGoSearchTool()
self.client = InferenceClient(model=model_name)
self.debug = debug
if self.debug:
print(f"IntelligentAgent initialized with model: {model_name}")
def _should_search(self, question: str) -> bool:
"""
Use LLM to determine if search is needed for the question.
Returns True if search is recommended, False otherwise.
"""
decision_prompt = f"""You are an AI assistant that decides whether a web search is needed to answer questions accurately.
Analyze this question and decide if it requires real-time information, recent data, or specific facts that might not be in your training data.
SEARCH IS NEEDED for:
- Current events, news, recent developments
- Real-time data (weather, stock prices, sports scores)
- Specific factual information that changes frequently
- Recent product releases, company information
- Current status of people, organizations, or projects
- Location-specific current information
SEARCH IS NOT NEEDED for:
- General knowledge questions
- Mathematical calculations
- Programming concepts and syntax
- Historical facts (older than 1 year)
- Definitions of well-established concepts
- How-to instructions for common tasks
- Creative writing or opinion-based responses
Question: "{question}"
Respond with only "SEARCH" or "NO_SEARCH" followed by a brief reason (max 20 words).
Example responses:
- "SEARCH - Current weather data needed"
- "NO_SEARCH - Mathematical concept, general knowledge sufficient"
"""
try:
response = self.client.text_generation(
decision_prompt,
max_new_tokens=50,
temperature=0.1,
do_sample=False
)
decision = response.strip().upper()
should_search = decision.startswith("SEARCH")
if self.debug:
print(f"Decision for '{question}': {decision}")
return should_search
except Exception as e:
if self.debug:
print(f"Error in search decision: {e}, defaulting to search")
# Default to search if decision fails
return True
def _answer_with_llm(self, question: str) -> str:
"""
Generate answer using LLM without search.
"""
answer_prompt = f"""You are a helpful AI assistant. Answer the following question based on your knowledge. Be accurate, concise, and helpful. If you're not certain about something, acknowledge the uncertainty.
Question: {question}
Answer:"""
try:
response = self.client.text_generation(
answer_prompt,
max_new_tokens=500,
temperature=0.3,
do_sample=True
)
return response.strip()
except Exception as e:
return f"Sorry, I encountered an error generating the response: {e}"
def _answer_with_search(self, question: str) -> str:
"""
Generate answer using search results and LLM.
"""
try:
# Perform search
search_results = self.search(question)
if not search_results:
return "No search results found. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question)
# Format search results
formatted_results = []
for i, result in enumerate(search_results[:3]): # Use top 3 results
title = result.get("title", "No title")
snippet = result.get("snippet", "").strip()
link = result.get("link", "")
formatted_results.append(f"Result {i+1}:\nTitle: {title}\nContent: {snippet}\nSource: {link}")
search_context = "\n\n".join(formatted_results)
# Generate answer using search context
answer_prompt = f"""You are a helpful AI assistant. Use the provided search results to answer the question accurately. Synthesize information from multiple sources when relevant, and cite sources when appropriate.
Question: {question}
Search Results:
{search_context}
Based on the search results above, provide a comprehensive answer to the question. If the search results don't fully answer the question, you can supplement with your general knowledge but clearly indicate what comes from the search results vs. your knowledge.
Answer:"""
try:
response = self.client.text_generation(
answer_prompt,
max_new_tokens=600,
temperature=0.3,
do_sample=True
)
return response.strip()
except Exception as e:
# Fallback to simple search result formatting
top_result = search_results[0]
title = top_result.get("title", "No title")
snippet = top_result.get("snippet", "").strip()
link = top_result.get("link", "")
return f"**{title}**\n\n{snippet}\n\nSource: {link}"
except Exception as e:
return f"Search failed: {e}. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question)
def __call__(self, question: str) -> str:
"""
Main entry point - decide whether to search and generate appropriate response.
"""
if self.debug:
print(f"Agent received question: {question}")
# Early validation
if not question or not question.strip():
return "Please provide a valid question."
try:
# Decide whether to search
if self._should_search(question):
if self.debug:
print("Using search-based approach")
answer = self._answer_with_search(question)
else:
if self.debug:
print("Using LLM-only approach")
answer = self._answer_with_llm(question)
except Exception as e:
answer = f"Sorry, I encountered an error: {e}"
if self.debug:
print(f"Agent returning answer: {answer[:100]}...")
return answer
def fetch_questions() -> Tuple[str, Optional[pd.DataFrame]]:
"""
Fetch questions from the API and cache them.
"""
global cached_questions
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty.", None
cached_questions = questions_data
# Create DataFrame for display
display_data = []
for item in questions_data:
display_data.append({
"Task ID": item.get("task_id", "Unknown"),
"Question": item.get("question", "")
})
df = pd.DataFrame(display_data)
status_msg = f"Successfully fetched {len(questions_data)} questions. Ready to generate answers."
return status_msg, df
except requests.exceptions.RequestException as e:
return f"Error fetching questions: {e}", None
except Exception as e:
return f"An unexpected error occurred: {e}", None
def generate_answers_async(model_name: str = "meta-llama/Llama-3.1-8B-Instruct", progress_callback=None):
"""
Generate answers for all cached questions asynchronously using the intelligent agent.
"""
global cached_answers, processing_status
if not cached_questions:
return "No questions available. Please fetch questions first."
processing_status["is_processing"] = True
processing_status["progress"] = 0
processing_status["total"] = len(cached_questions)
try:
agent = IntelligentAgent(debug=True, model_name=model_name)
cached_answers = {}
for i, item in enumerate(cached_questions):
if not processing_status["is_processing"]: # Check if cancelled
break
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
answer = agent(question_text)
cached_answers[task_id] = {
"question": question_text,
"answer": answer
}
except Exception as e:
cached_answers[task_id] = {
"question": question_text,
"answer": f"AGENT ERROR: {e}"
}
processing_status["progress"] = i + 1
if progress_callback:
progress_callback(i + 1, len(cached_questions))
except Exception as e:
print(f"Error in generate_answers_async: {e}")
finally:
processing_status["is_processing"] = False
def start_answer_generation(model_choice: str):
"""
Start the answer generation process in a separate thread.
"""
if processing_status["is_processing"]:
return "Answer generation is already in progress.", None
if not cached_questions:
return "No questions available. Please fetch questions first.", None
# Map model choice to actual model name
model_map = {
"Llama 3.1 8B": "meta-llama/Llama-3.1-8B-Instruct",
"Llama 3.1 70B": "meta-llama/Llama-3.1-70B-Instruct",
"Mistral 7B": "mistralai/Mistral-7B-Instruct-v0.3",
"CodeLlama 7B": "codellama/CodeLlama-7b-Instruct-hf"
}
selected_model = model_map.get(model_choice, "meta-llama/Llama-3.1-8B-Instruct")
# Start generation in background thread
thread = threading.Thread(target=generate_answers_async, args=(selected_model,))
thread.daemon = True
thread.start()
return f"Answer generation started using {model_choice}. Check progress below.", None
def get_generation_progre |