File size: 22,409 Bytes
10e9b7d
 
eccf8e4
7d65c66
620f572
3c4371f
c275bbd
3164d5a
 
 
7067f57
3164d5a
e80aab9
3db6293
e80aab9
3164d5a
 
 
 
8b49454
61401c1
 
 
c275bbd
61401c1
8b49454
 
61401c1
 
 
 
 
 
 
10d25e1
1b2a135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8e55a1
1b2a135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10d25e1
1b2a135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10d25e1
1b2a135
 
291f4f8
 
fdceba3
291f4f8
1b2a135
 
 
291f4f8
e73a565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b2a135
e73a565
1b2a135
 
10d25e1
1b2a135
 
 
 
 
 
10d25e1
1b2a135
 
 
 
 
 
 
 
 
 
 
 
 
e73a565
 
1b2a135
e73a565
 
 
 
 
 
 
 
 
 
 
 
291f4f8
e73a565
291f4f8
 
1b2a135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
291f4f8
1b2a135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0b404e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c6017d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
import os
import gradio as gr
import requests
import inspect
import time
import pandas as pd
from smolagents import DuckDuckGoSearchTool
import threading
from typing import Dict, List, Optional, Tuple
import json
from huggingface_hub import InferenceClient

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Global Cache for Answers ---
cached_answers = {}
cached_questions = []
processing_status = {"is_processing": False, "progress": 0, "total": 0}

# --- Intelligent Agent with Conditional Search ---
class IntelligentAgent:
    def __init__(self, debug: bool = False, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"):
        self.search = DuckDuckGoSearchTool()
        self.client = InferenceClient(model=model_name)
        self.debug = debug
        if self.debug:
            print(f"IntelligentAgent initialized with model: {model_name}")

    def _should_search(self, question: str) -> bool:
        """
        Use LLM to determine if search is needed for the question.
        Returns True if search is recommended, False otherwise.
        """
        decision_prompt = f"""You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending on whether the element to be put in the list is a number or a string

Analyze this question and decide if it requires real-time information, recent data, or specific facts that might not be in your training data.

SEARCH IS NEEDED for:
- Current events, news, recent developments
- Real-time data (weather, stock prices, sports scores)
- Specific factual information that changes frequently
- Recent product releases, company information
- Current status of people, organizations, or projects
- Location-specific current information

SEARCH IS NOT NEEDED for:
- General knowledge questions
- Mathematical calculations
- Programming concepts and syntax
- Historical facts (older than 1 year)
- Definitions of well-established concepts
- How-to instructions for common tasks
- Creative writing or opinion-based responses

Question: "{question}"

Respond with only "SEARCH" or "NO_SEARCH" followed by a brief reason (max 20 words).

Example responses:
- "SEARCH - Current weather data needed"
- "NO_SEARCH - Mathematical concept, general knowledge sufficient"
"""

        try:
            response = self.client.text_generation(
                decision_prompt,
                max_new_tokens=50,
                temperature=0.1,
                do_sample=False
            )
            
            decision = response.strip().upper()
            should_search = decision.startswith("SEARCH")
            time.sleep(5)
            
            if self.debug:
                print(f"Decision for '{question}': {decision}")
                
            return should_search
            
        except Exception as e:
            if self.debug:
                print(f"Error in search decision: {e}, defaulting to search")
            # Default to search if decision fails
            return True

    def _answer_with_llm(self, question: str) -> str:
        """
        Generate answer using LLM without search.
        """
        answer_prompt = f"""You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."
Question: {question}

Answer:"""

        try:
            response = self.client.text_generation(
                answer_prompt,
                max_new_tokens=500,
                temperature=0.3,
                do_sample=True
            )
            return response.strip()
            
        except Exception as e:
            return f"Sorry, I encountered an error generating the response: {e}"

    def _answer_with_search(self, question: str) -> str:
        """
        Generate answer using search results and LLM.
        """
        try:
            # Perform search
            time.sleep(10)
            search_results = self.search(question)
            
            if self.debug:
                print(f"Search results type: {type(search_results)}")
                #print(f"Search results: {search_results}")
            
            if not search_results:
                return "No search results found. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question)

            # Format search results - handle different result formats
            if self.debug:
                print(f"First result type: {type(search_results[0]) if search_results else 'None'}")
                print(f"First result: {search_results[0] if search_results else 'None'}")
            
            # If search_results is a string, use it directly
            if isinstance(search_results, str):
                search_context = search_results
            else:
                # Handle list of results
                formatted_results = []
                for i, result in enumerate(search_results[:3]):  # Use top 3 results
                    if isinstance(result, dict):
                        title = result.get("title", "No title")
                        snippet = result.get("snippet", "").strip()
                        link = result.get("link", "")
                        formatted_results.append(f"Title: {title}\nContent: {snippet}\nSource: {link}")
                    elif isinstance(result, str):
                        # If result is a string, use it directly
                        formatted_results.append(result)
                    else:
                        # Handle other formats
                        formatted_results.append(str(result))
                
                search_context = "\n\n".join(formatted_results)

            # Generate answer using search context
            answer_prompt = f"""You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."

Question: {question}

Search Results:
{search_context}

Based on the search results above, provide an answer to the question. If the search results don't fully answer the question, you can supplement with your general knowledge.

Answer:"""

            try:
                response = self.client.text_generation(
                    answer_prompt,
                    max_new_tokens=600,
                    temperature=0.3,
                    do_sample=True
                )
                return response.strip()
                
            except Exception as e:
                if self.debug:
                    print(f"LLM generation error: {e}")
                # Fallback to simple search result formatting
                if search_results:
                    if isinstance(search_results, str):
                        return search_results
                    elif isinstance(search_results, list) and len(search_results) > 0:
                        first_result = search_results[0]
                        if isinstance(first_result, dict):
                            title = first_result.get("title", "Search Result")
                            snippet = first_result.get("snippet", "").strip()
                            link = first_result.get("link", "")
                            return f"**{title}**\n\n{snippet}\n\n{f'Source: {link}' if link else ''}"
                        else:
                            return str(first_result)
                    else:
                        return str(search_results)
                else:
                    return "Search completed but no usable results found."

        except Exception as e:
            return f"Search failed: {e}. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question)

    def __call__(self, question: str) -> str:
        """
        Main entry point - decide whether to search and generate appropriate response.
        """
        if self.debug:
            print(f"Agent received question: {question}")

        # Early validation
        if not question or not question.strip():
            return "Please provide a valid question."

        try:
            # Decide whether to search
            if self._should_search(question):
                if self.debug:
                    print("Using search-based approach")
                answer = self._answer_with_search(question)
            else:
                if self.debug:
                    print("Using LLM-only approach")
                answer = self._answer_with_llm(question)

        except Exception as e:
            answer = f"Sorry, I encountered an error: {e}"

        if self.debug:
            print(f"Agent returning answer: {answer[:100]}...")
        
        return answer

def fetch_questions() -> Tuple[str, Optional[pd.DataFrame]]:
    """
    Fetch questions from the API and cache them.
    """
    global cached_questions
    
    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        
        if not questions_data:
            return "Fetched questions list is empty.", None
            
        cached_questions = questions_data
        
        # Create DataFrame for display
        display_data = []
        for item in questions_data:
            display_data.append({
                "Task ID": item.get("task_id", "Unknown"),
                "Question": item.get("question", "")
            })
        
        df = pd.DataFrame(display_data)
        status_msg = f"Successfully fetched {len(questions_data)} questions. Ready to generate answers."
        
        return status_msg, df
        
    except requests.exceptions.RequestException as e:
        return f"Error fetching questions: {e}", None
    except Exception as e:
        return f"An unexpected error occurred: {e}", None

def generate_answers_async(model_name: str = "meta-llama/Llama-3.1-8B-Instruct", progress_callback=None):
    """
    Generate answers for all cached questions asynchronously using the intelligent agent.
    """
    global cached_answers, processing_status
    
    if not cached_questions:
        return "No questions available. Please fetch questions first."
    
    processing_status["is_processing"] = True
    processing_status["progress"] = 0
    processing_status["total"] = len(cached_questions)
    
    try:
        agent = IntelligentAgent(debug=True, model_name=model_name)
        cached_answers = {}
        
        for i, item in enumerate(cached_questions):
            if not processing_status["is_processing"]:  # Check if cancelled
                break
                
            task_id = item.get("task_id")
            question_text = item.get("question")
            
            if not task_id or question_text is None:
                continue
                
            try:
                answer = agent(question_text)
                cached_answers[task_id] = {
                    "question": question_text,
                    "answer": answer
                }
            except Exception as e:
                cached_answers[task_id] = {
                    "question": question_text,
                    "answer": f"AGENT ERROR: {e}"
                }
            
            processing_status["progress"] = i + 1
            if progress_callback:
                progress_callback(i + 1, len(cached_questions))
                
    except Exception as e:
        print(f"Error in generate_answers_async: {e}")
    finally:
        processing_status["is_processing"] = False

def start_answer_generation(model_choice: str):
    """
    Start the answer generation process in a separate thread.
    """
    if processing_status["is_processing"]:
        return "Answer generation is already in progress.", None
    
    if not cached_questions:
        return "No questions available. Please fetch questions first.", None
    
    # Map model choice to actual model name
    model_map = {
        "Llama 3.1 8B": "meta-llama/Llama-3.1-8B-Instruct",
        "Llama 3.1 70B": "meta-llama/Llama-3.1-70B-Instruct",
        "Mistral 7B": "mistralai/Mistral-7B-Instruct-v0.3",
        "CodeLlama 7B": "codellama/CodeLlama-7b-Instruct-hf"
    }
    
    selected_model = model_map.get(model_choice, "meta-llama/Llama-3.1-8B-Instruct")
    
    # Start generation in background thread
    thread = threading.Thread(target=generate_answers_async, args=(selected_model,))
    thread.daemon = True
    thread.start()
    
    return f"Answer generation started using {model_choice}. Check progress below.", None

def get_generation_progress():
    """
    Get the current progress of answer generation.
    """
    if not processing_status["is_processing"] and processing_status["progress"] == 0:
        return "Not started", None
    
    if processing_status["is_processing"]:
        progress = processing_status["progress"]
        total = processing_status["total"]
        status_msg = f"Generating answers... {progress}/{total} completed"
        return status_msg, None
    else:
        # Generation completed
        if cached_answers:
            # Create DataFrame with results
            display_data = []
            for task_id, data in cached_answers.items():
                display_data.append({
                    "Task ID": task_id,
                    "Question": data["question"][:100] + "..." if len(data["question"]) > 100 else data["question"],
                    "Generated Answer": data["answer"][:200] + "..." if len(data["answer"]) > 200 else data["answer"]
                })
            
            df = pd.DataFrame(display_data)
            status_msg = f"Answer generation completed! {len(cached_answers)} answers ready for submission."
            return status_msg, df
        else:
            return "Answer generation completed but no answers were generated.", None

def submit_cached_answers(profile: gr.OAuthProfile | None):
    """
    Submit the cached answers to the evaluation API.
    """
    global cached_answers
    
    if not profile:
        return "Please log in to Hugging Face first.", None
    
    if not cached_answers:
        return "No cached answers available. Please generate answers first.", None
    
    username = profile.username
    space_id = os.getenv("SPACE_ID")
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Unknown"
    
    # Prepare submission payload
    answers_payload = []
    for task_id, data in cached_answers.items():
        answers_payload.append({
            "task_id": task_id,
            "submitted_answer": data["answer"]
        })
    
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload
    }
    
    # Submit to API
    api_url = DEFAULT_API_URL
    submit_url = f"{api_url}/submit"
    
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        
        # Create results DataFrame
        results_log = []
        for task_id, data in cached_answers.items():
            results_log.append({
                "Task ID": task_id,
                "Question": data["question"],
                "Submitted Answer": data["answer"]
            })
        
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
        
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except:
            error_detail += f" Response: {e.response.text[:500]}"
        return f"Submission Failed: {error_detail}", None
        
    except requests.exceptions.Timeout:
        return "Submission Failed: The request timed out.", None
        
    except Exception as e:
        return f"Submission Failed: {e}", None

def clear_cache():
    """
    Clear all cached data.
    """
    global cached_answers, cached_questions, processing_status
    cached_answers = {}
    cached_questions = []
    processing_status = {"is_processing": False, "progress": 0, "total": 0}
    return "Cache cleared successfully.", None



# --- Enhanced Gradio Interface ---
with gr.Blocks(title="Intelligent Agent with Conditional Search") as demo:
    gr.Markdown("# Intelligent Agent with Conditional Search")
    gr.Markdown("This agent uses an LLM to decide when search is needed, optimizing for both accuracy and efficiency.")

    with gr.Row():
        gr.LoginButton()
        clear_btn = gr.Button("Clear Cache", variant="secondary")

    with gr.Tab("Step 1: Fetch Questions"):
        gr.Markdown("### Fetch Questions from API")
        fetch_btn = gr.Button("Fetch Questions", variant="primary")
        fetch_status = gr.Textbox(label="Fetch Status", lines=2, interactive=False)
        questions_table = gr.DataFrame(label="Available Questions", wrap=True)
        
        fetch_btn.click(
            fn=fetch_questions,
            outputs=[fetch_status, questions_table]
        )

    with gr.Tab("Step 2: Generate Answers"):
        gr.Markdown("### Generate Answers with Intelligent Search Decision")
        
        with gr.Row():
            model_choice = gr.Dropdown(
                choices=["Llama 3.1 8B", "Llama 3.1 70B", "Mistral 7B", "CodeLlama 7B"],
                value="Llama 3.1 8B",
                label="Select Model"
            )
            generate_btn = gr.Button("Start Answer Generation", variant="primary")
            refresh_btn = gr.Button("Refresh Progress", variant="secondary")
        
        generation_status = gr.Textbox(label="Generation Status", lines=2, interactive=False)
        answers_preview = gr.DataFrame(label="Generated Answers Preview", wrap=True)
        
        generate_btn.click(
            fn=start_answer_generation,
            inputs=[model_choice],
            outputs=[generation_status, answers_preview]
        )
        
        refresh_btn.click(
            fn=get_generation_progress,
            outputs=[generation_status, answers_preview]
        )

    with gr.Tab("Step 3: Submit Results"):
        gr.Markdown("### Submit Generated Answers")
        submit_btn = gr.Button("Submit Cached Answers", variant="primary")
        submission_status = gr.Textbox(label="Submission Status", lines=5, interactive=False)
        final_results = gr.DataFrame(label="Final Submission Results", wrap=True)
        
        submit_btn.click(
            fn=submit_cached_answers,
            outputs=[submission_status, final_results]
        )

    # Clear cache functionality
    clear_btn.click(
        fn=clear_cache,
        outputs=[fetch_status, questions_table]
    )

    # Auto-refresh progress every 5 seconds when generation is active
    demo.load(
        fn=get_generation_progress,
        outputs=[generation_status, answers_preview]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " Intelligent Agent Starting " + "-"*30)
    
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" Intelligent Agent Starting ")) + "\n")

    print("Launching Intelligent Agent Interface...")
    demo.launch(debug=True, share=False)