Spaces:
Sleeping
Sleeping
| import os | |
| import gradio as gr | |
| import requests | |
| import inspect | |
| import time | |
| import pandas as pd | |
| from smolagents import DuckDuckGoSearchTool | |
| import threading | |
| from typing import Dict, List, Optional, Tuple, Union | |
| import json | |
| from huggingface_hub import InferenceClient | |
| import base64 | |
| from PIL import Image | |
| import io | |
| import tempfile | |
| import urllib.parse | |
| from pathlib import Path | |
| import re | |
| from bs4 import BeautifulSoup | |
| import mimetypes | |
| # --- Constants --- | |
| DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
| # --- Global Cache for Answers --- | |
| cached_answers = {} | |
| cached_questions = [] | |
| processing_status = {"is_processing": False, "progress": 0, "total": 0} | |
| # --- Web Content Fetcher --- | |
| class WebContentFetcher: | |
| def __init__(self, debug: bool = True): | |
| self.debug = debug | |
| self.session = requests.Session() | |
| self.session.headers.update({ | |
| 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36' | |
| }) | |
| def extract_urls_from_text(self, text: str) -> List[str]: | |
| """Extract URLs from text using regex.""" | |
| url_pattern = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+' | |
| urls = re.findall(url_pattern, text) | |
| return list(set(urls)) # Remove duplicates | |
| def fetch_url_content(self, url: str) -> Dict[str, str]: | |
| """ | |
| Fetch content from a URL and extract text, handling different content types. | |
| Returns a dictionary with 'content', 'title', 'content_type', and 'error' keys. | |
| """ | |
| try: | |
| # Clean the URL | |
| url = url.strip() | |
| if not url.startswith(('http://', 'https://')): | |
| url = 'https://' + url | |
| if self.debug: | |
| print(f"Fetching URL: {url}") | |
| response = self.session.get(url, timeout=30, allow_redirects=True) | |
| response.raise_for_status() | |
| content_type = response.headers.get('content-type', '').lower() | |
| result = { | |
| 'url': url, | |
| 'content_type': content_type, | |
| 'title': '', | |
| 'content': '', | |
| 'error': None | |
| } | |
| # Handle different content types | |
| if 'text/html' in content_type: | |
| # Parse HTML content | |
| soup = BeautifulSoup(response.content, 'html.parser') | |
| # Extract title | |
| title_tag = soup.find('title') | |
| result['title'] = title_tag.get_text().strip() if title_tag else 'No title' | |
| # Remove script and style elements | |
| for script in soup(["script", "style"]): | |
| script.decompose() | |
| # Extract text content | |
| text_content = soup.get_text() | |
| # Clean up text | |
| lines = (line.strip() for line in text_content.splitlines()) | |
| chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) | |
| text_content = ' '.join(chunk for chunk in chunks if chunk) | |
| # Limit content length | |
| if len(text_content) > 8000: | |
| text_content = text_content[:8000] + "... (truncated)" | |
| result['content'] = text_content | |
| elif 'text/plain' in content_type: | |
| # Handle plain text | |
| text_content = response.text | |
| if len(text_content) > 8000: | |
| text_content = text_content[:8000] + "... (truncated)" | |
| result['content'] = text_content | |
| result['title'] = f"Text document from {url}" | |
| elif 'application/json' in content_type: | |
| # Handle JSON content | |
| try: | |
| json_data = response.json() | |
| result['content'] = json.dumps(json_data, indent=2)[:8000] | |
| result['title'] = f"JSON document from {url}" | |
| except: | |
| result['content'] = response.text[:8000] | |
| result['title'] = f"JSON document from {url}" | |
| elif any(x in content_type for x in ['application/pdf', 'application/msword', 'application/vnd.openxmlformats']): | |
| # Handle document files | |
| result['content'] = f"Document file detected ({content_type}). Content extraction for this file type is not implemented." | |
| result['title'] = f"Document from {url}" | |
| else: | |
| # Handle other content types | |
| if response.text: | |
| content = response.text[:8000] | |
| result['content'] = content | |
| result['title'] = f"Content from {url}" | |
| else: | |
| result['content'] = f"Non-text content detected ({content_type})" | |
| result['title'] = f"File from {url}" | |
| if self.debug: | |
| print(f"Successfully fetched content from {url}: {len(result['content'])} characters") | |
| return result | |
| except requests.exceptions.RequestException as e: | |
| error_msg = f"Failed to fetch {url}: {str(e)}" | |
| if self.debug: | |
| print(error_msg) | |
| return { | |
| 'url': url, | |
| 'content_type': 'error', | |
| 'title': f"Error fetching {url}", | |
| 'content': '', | |
| 'error': error_msg | |
| } | |
| except Exception as e: | |
| error_msg = f"Unexpected error fetching {url}: {str(e)}" | |
| if self.debug: | |
| print(error_msg) | |
| return { | |
| 'url': url, | |
| 'content_type': 'error', | |
| 'title': f"Error fetching {url}", | |
| 'content': '', | |
| 'error': error_msg | |
| } | |
| def fetch_multiple_urls(self, urls: List[str]) -> List[Dict[str, str]]: | |
| """Fetch content from multiple URLs.""" | |
| results = [] | |
| for url in urls[:5]: # Limit to 5 URLs to avoid excessive processing | |
| result = self.fetch_url_content(url) | |
| results.append(result) | |
| time.sleep(1) # Be respectful to servers | |
| return results | |
| def remove_thinking_tags(text): | |
| import re | |
| # Remove <think>...</think> blocks | |
| cleaned = re.sub(r'<think>.*?</think>', '', text, flags=re.DOTALL) | |
| # Remove thinking markers | |
| cleaned = re.sub(r'<thinking>.*?</thinking>', '', cleaned, flags=re.DOTALL) | |
| return cleaned.strip() | |
| # --- File Download Utility --- | |
| def download_attachment(url: str, temp_dir: str) -> Optional[str]: | |
| """ | |
| Download an attachment from URL to a temporary directory. | |
| Returns the local file path if successful, None otherwise. | |
| """ | |
| try: | |
| response = requests.get(url, timeout=30) | |
| response.raise_for_status() | |
| # Extract filename from URL or create one based on content type | |
| parsed_url = urllib.parse.urlparse(url) | |
| filename = os.path.basename(parsed_url.path) | |
| if not filename or '.' not in filename: | |
| # Try to determine extension from content type | |
| content_type = response.headers.get('content-type', '').lower() | |
| if 'image' in content_type: | |
| if 'jpeg' in content_type or 'jpg' in content_type: | |
| filename = f"attachment_{int(time.time())}.jpg" | |
| elif 'png' in content_type: | |
| filename = f"attachment_{int(time.time())}.png" | |
| else: | |
| filename = f"attachment_{int(time.time())}.img" | |
| elif 'audio' in content_type: | |
| if 'mp3' in content_type: | |
| filename = f"attachment_{int(time.time())}.mp3" | |
| elif 'wav' in content_type: | |
| filename = f"attachment_{int(time.time())}.wav" | |
| else: | |
| filename = f"attachment_{int(time.time())}.audio" | |
| elif 'python' in content_type or 'text' in content_type: | |
| filename = f"attachment_{int(time.time())}.py" | |
| else: | |
| filename = f"attachment_{int(time.time())}.file" | |
| file_path = os.path.join(temp_dir, filename) | |
| with open(file_path, 'wb') as f: | |
| f.write(response.content) | |
| print(f"Downloaded attachment: {url} -> {file_path}") | |
| return file_path | |
| except Exception as e: | |
| print(f"Failed to download attachment {url}: {e}") | |
| return None | |
| # --- Code Processing Tool --- | |
| class CodeAnalysisTool: | |
| def __init__(self, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"): | |
| self.client = InferenceClient(model=model_name, provider="sambanova") | |
| def analyze_code(self, code_path: str) -> str: | |
| """ | |
| Analyze Python code and return insights. | |
| """ | |
| try: | |
| with open(code_path, 'r', encoding='utf-8') as f: | |
| code_content = f.read() | |
| # Limit code length for analysis | |
| if len(code_content) > 5000: | |
| code_content = code_content[:5000] + "\n... (truncated)" | |
| analysis_prompt = f"""Analyze this Python code and provide a concise summary of: | |
| 1. What the code does (main functionality) | |
| 2. Key functions/classes | |
| 3. Any notable patterns or issues | |
| 4. Input/output behavior if applicable | |
| Code: | |
| ```python | |
| {code_content} | |
| ``` | |
| Provide a brief, focused analysis:""" | |
| messages = [{"role": "user", "content": analysis_prompt}] | |
| response = self.client.chat_completion( | |
| messages=messages, | |
| max_tokens=500, | |
| temperature=0.3 | |
| ) | |
| return response.choices[0].message.content.strip() | |
| except Exception as e: | |
| return f"Code analysis failed: {e}" | |
| # --- Image Processing Tool --- | |
| class ImageAnalysisTool: | |
| def __init__(self, model_name: str = "microsoft/Florence-2-large"): | |
| self.client = InferenceClient(model=model_name) | |
| def analyze_image(self, image_path: str, prompt: str = "Describe this image in detail") -> str: | |
| """ | |
| Analyze an image and return a description. | |
| """ | |
| try: | |
| # Open and process the image | |
| with open(image_path, "rb") as f: | |
| image_bytes = f.read() | |
| # Use the vision model to analyze the image | |
| response = self.client.image_to_text( | |
| image=image_bytes, | |
| model="microsoft/Florence-2-large" | |
| ) | |
| return response.get("generated_text", "Could not analyze image") | |
| except Exception as e: | |
| try: | |
| # Fallback: use a different vision model | |
| response = self.client.image_to_text( | |
| image=image_bytes, | |
| model="Salesforce/blip-image-captioning-large" | |
| ) | |
| return response.get("generated_text", f"Image analysis error: {e}") | |
| except: | |
| return f"Image analysis failed: {e}" | |
| def extract_text_from_image(self, image_path: str) -> str: | |
| """ | |
| Extract text from an image using OCR. | |
| """ | |
| try: | |
| with open(image_path, "rb") as f: | |
| image_bytes = f.read() | |
| # Use an OCR model | |
| response = self.client.image_to_text( | |
| image=image_bytes, | |
| model="microsoft/trocr-base-printed" | |
| ) | |
| return response.get("generated_text", "No text found in image") | |
| except Exception as e: | |
| return f"OCR failed: {e}" | |
| # --- Audio Processing Tool --- | |
| class AudioTranscriptionTool: | |
| def __init__(self, model_name: str = "openai/whisper-large-v3"): | |
| self.client = InferenceClient(model=model_name) | |
| def transcribe_audio(self, audio_path: str) -> str: | |
| """ | |
| Transcribe audio file to text. | |
| """ | |
| try: | |
| with open(audio_path, "rb") as f: | |
| audio_bytes = f.read() | |
| # Use Whisper for transcription | |
| response = self.client.automatic_speech_recognition( | |
| audio=audio_bytes | |
| ) | |
| return response.get("text", "Could not transcribe audio") | |
| except Exception as e: | |
| try: | |
| # Fallback to a different ASR model | |
| response = self.client.automatic_speech_recognition( | |
| audio=audio_bytes, | |
| model="facebook/wav2vec2-large-960h-lv60-self" | |
| ) | |
| return response.get("text", f"Audio transcription error: {e}") | |
| except: | |
| return f"Audio transcription failed: {e}" | |
| # --- Enhanced Intelligent Agent with URL Processing --- | |
| class IntelligentAgent: | |
| def __init__(self, debug: bool = True, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"): | |
| self.search = DuckDuckGoSearchTool() | |
| self.client = InferenceClient(model=model_name, provider="sambanova") | |
| self.image_tool = ImageAnalysisTool() | |
| self.audio_tool = AudioTranscriptionTool() | |
| self.code_tool = CodeAnalysisTool(model_name) | |
| self.web_fetcher = WebContentFetcher(debug) | |
| self.debug = debug | |
| if self.debug: | |
| print(f"IntelligentAgent initialized with model: {model_name}") | |
| def _chat_completion(self, prompt: str, max_tokens: int = 500, temperature: float = 0.3) -> str: | |
| """ | |
| Use chat completion instead of text generation to avoid provider compatibility issues. | |
| """ | |
| try: | |
| messages = [{"role": "user", "content": prompt}] | |
| # Try chat completion first | |
| try: | |
| response = self.client.chat_completion( | |
| messages=messages, | |
| max_tokens=max_tokens, | |
| temperature=temperature | |
| ) | |
| return remove_thinking_tags(response.choices[0].message.content.strip()) | |
| except Exception as chat_error: | |
| if self.debug: | |
| print(f"Chat completion failed: {chat_error}, trying text generation...") | |
| # Fallback to text generation | |
| response = self.client.conversational( | |
| prompt, | |
| max_new_tokens=max_tokens, | |
| temperature=temperature, | |
| do_sample=temperature > 0 | |
| ) | |
| response = remove_thinking_tags(response.strip) | |
| return response.strip() | |
| except Exception as e: | |
| if self.debug: | |
| print(f"Both chat completion and text generation failed: {e}") | |
| raise e | |
| def _extract_and_process_urls(self, question_text: str) -> str: | |
| """ | |
| Extract URLs from question text and fetch their content. | |
| Returns formatted content from all URLs. | |
| """ | |
| urls = self.web_fetcher.extract_urls_from_text(question_text) | |
| if not urls: | |
| return "" | |
| if self.debug: | |
| print(f"Found {len(urls)} URLs in question: {urls}") | |
| url_contents = self.web_fetcher.fetch_multiple_urls(urls) | |
| if not url_contents: | |
| return "" | |
| # Format the content | |
| formatted_content = [] | |
| for content_data in url_contents: | |
| if content_data['error']: | |
| formatted_content.append(f"URL: {content_data['url']}\nError: {content_data['error']}") | |
| else: | |
| formatted_content.append( | |
| f"URL: {content_data['url']}\n" | |
| f"Title: {content_data['title']}\n" | |
| f"Content Type: {content_data['content_type']}\n" | |
| f"Content: {content_data['content']}" | |
| ) | |
| return "\n\n" + "="*50 + "\n".join(formatted_content) + "\n" + "="*50 | |
| def _detect_and_download_attachments(self, question_data: dict) -> Tuple[List[str], List[str], List[str]]: | |
| """ | |
| Detect and download attachments from question data. | |
| Returns (image_files, audio_files, code_files) | |
| """ | |
| image_files = [] | |
| audio_files = [] | |
| code_files = [] | |
| # Create temporary directory for downloads | |
| temp_dir = tempfile.mkdtemp(prefix="agent_attachments_") | |
| # Check for attachments in various fields | |
| attachments = [] | |
| # Common fields where attachments might be found | |
| attachment_fields = ['attachments', 'files', 'media', 'resources'] | |
| for field in attachment_fields: | |
| if field in question_data: | |
| field_data = question_data[field] | |
| if isinstance(field_data, list): | |
| attachments.extend(field_data) | |
| elif isinstance(field_data, str): | |
| attachments.append(field_data) | |
| # Also check if the question text contains file URLs (not web URLs) | |
| question_text = question_data.get('question', '') | |
| if 'http' in question_text: | |
| # Only consider URLs that likely point to files, not web pages | |
| urls = re.findall(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', question_text) | |
| for url in urls: | |
| # Check if URL likely points to a file (has file extension) | |
| parsed = urllib.parse.urlparse(url) | |
| path = parsed.path.lower() | |
| if any(path.endswith(ext) for ext in ['.jpg', '.jpeg', '.png', '.gif', '.mp3', '.wav', '.py', '.txt', '.pdf']): | |
| attachments.append(url) | |
| # Download and categorize attachments | |
| for attachment in attachments: | |
| if isinstance(attachment, dict): | |
| url = attachment.get('url') or attachment.get('link') or attachment.get('file_url') | |
| file_type = attachment.get('type', '').lower() | |
| else: | |
| url = attachment | |
| file_type = '' | |
| if not url: | |
| continue | |
| # Download the file | |
| file_path = download_attachment(url, temp_dir) | |
| if not file_path: | |
| continue | |
| # Categorize based on extension or type | |
| file_ext = Path(file_path).suffix.lower() | |
| if file_type: | |
| if 'image' in file_type or file_ext in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp']: | |
| image_files.append(file_path) | |
| elif 'audio' in file_type or file_ext in ['.mp3', '.wav', '.m4a', '.ogg', '.flac']: | |
| audio_files.append(file_path) | |
| elif 'python' in file_type or 'code' in file_type or file_ext in ['.py', '.txt']: | |
| code_files.append(file_path) | |
| else: | |
| # Auto-detect based on extension | |
| if file_ext in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp']: | |
| image_files.append(file_path) | |
| elif file_ext in ['.mp3', '.wav', '.m4a', '.ogg', '.flac']: | |
| audio_files.append(file_path) | |
| elif file_ext in ['.py', '.txt']: | |
| code_files.append(file_path) | |
| if self.debug: | |
| print(f"Downloaded attachments: {len(image_files)} images, {len(audio_files)} audio, {len(code_files)} code files") | |
| return image_files, audio_files, code_files | |
| def _process_attachments(self, image_files: List[str] = None, audio_files: List[str] = None, code_files: List[str] = None) -> str: | |
| """ | |
| Process all types of attachments and return their content as text. | |
| """ | |
| attachment_content = [] | |
| # Process code files | |
| if code_files: | |
| for code_file in code_files: | |
| if code_file and os.path.exists(code_file): | |
| try: | |
| # First, include the raw code content (truncated) | |
| with open(code_file, 'r', encoding='utf-8') as f: | |
| code_content = f.read() | |
| if len(code_content) > 1000: | |
| code_preview = code_content[:1000] + "\n... (truncated)" | |
| else: | |
| code_preview = code_content | |
| attachment_content.append(f"Code File Content:\n```python\n{code_preview}\n```") | |
| # Then add analysis | |
| code_analysis = self.code_tool.analyze_code(code_file) | |
| attachment_content.append(f"Code Analysis: {code_analysis}") | |
| except Exception as e: | |
| attachment_content.append(f"Error processing code file {code_file}: {e}") | |
| # Process images | |
| if image_files: | |
| for image_file in image_files: | |
| if image_file and os.path.exists(image_file): | |
| try: | |
| # Analyze the image | |
| image_description = self.image_tool.analyze_image(image_file) | |
| attachment_content.append(f"Image Analysis: {image_description}") | |
| # Try to extract text from image | |
| extracted_text = self.image_tool.extract_text_from_image(image_file) | |
| if extracted_text and "No text found" not in extracted_text: | |
| attachment_content.append(f"Text from Image: {extracted_text}") | |
| except Exception as e: | |
| attachment_content.append(f"Error processing image {image_file}: {e}") | |
| # Process audio files | |
| if audio_files: | |
| for audio_file in audio_files: | |
| if audio_file and os.path.exists(audio_file): | |
| try: | |
| # Transcribe the audio | |
| transcription = self.audio_tool.transcribe_audio(audio_file) | |
| attachment_content.append(f"Audio Transcription: {transcription}") | |
| except Exception as e: | |
| attachment_content.append(f"Error processing audio {audio_file}: {e}") | |
| return "\n\n".join(attachment_content) if attachment_content else "" | |
| def _should_search(self, question: str, attachment_context: str = "", url_context: str = "") -> bool: | |
| """ | |
| Use LLM to determine if search is needed for the question, considering attachment and URL context. | |
| Returns True if search is recommended, False otherwise. | |
| """ | |
| decision_prompt = f"""Analyze this question and decide if it requires real-time information, recent data, or specific facts that might not be in your training data. | |
| SEARCH IS NEEDED for: | |
| - Current events, news, recent developments | |
| - Real-time data (weather, stock prices, sports scores) | |
| - Specific factual information that changes frequently | |
| - Recent product releases, company information | |
| - Current status of people, organizations, or projects | |
| - Location-specific current information | |
| SEARCH IS NOT NEEDED for: | |
| - General knowledge questions | |
| - Mathematical calculations | |
| - Programming concepts and syntax | |
| - Historical facts (older than 1 year) | |
| - Definitions of well-established concepts | |
| - How-to instructions for common tasks | |
| - Creative writing or opinion-based responses | |
| - Questions that can be answered from attached files (code, images, audio) | |
| - Questions that can be answered from URL content provided | |
| - Code analysis, debugging, or explanation questions | |
| - Questions about uploaded or linked content | |
| Question: "{question}" | |
| {f"Attachment Context Available: {attachment_context[:500]}..." if attachment_context else "No attachment context available."} | |
| {f"URL Content Available: {url_context[:500]}..." if url_context else "No URL content available."} | |
| If you cannot provide an answer, reply with "NO_SEARCH". Respond with only "SEARCH" or "NO_SEARCH" followed by a brief reason (max 20 words). | |
| Example responses: | |
| - "SEARCH - Current weather data needed" | |
| - "NO_SEARCH - Mathematical concept, general knowledge sufficient" | |
| - "NO_SEARCH - Can be answered from attached code/image/URL content" | |
| """ | |
| try: | |
| response = self._chat_completion(decision_prompt, max_tokens=50, temperature=0.1) | |
| decision = response.strip().upper() | |
| should_search = decision.startswith("SEARCH") | |
| time.sleep(5) | |
| if self.debug: | |
| print(f"Decision for '{question}': {decision}") | |
| return should_search | |
| except Exception as e: | |
| if self.debug: | |
| print(f"Error in search decision: {e}, defaulting to no search for questions with context") | |
| # Default to no search if decision fails and there is context available | |
| return len(attachment_context) == 0 and len(url_context) == 0 | |
| def _answer_with_llm(self, question: str, attachment_context: str = "", url_context: str = "") -> str: | |
| """ | |
| Generate answer using LLM without search, considering attachment and URL context. | |
| """ | |
| context_sections = [] | |
| if attachment_context: | |
| context_sections.append(f"Attachment Context:\n{attachment_context}") | |
| if url_context: | |
| context_sections.append(f"URL Content:\n{url_context}") | |
| context_section = "\n\n".join(context_sections) if context_sections else "" | |
| answer_prompt = f"""You are a general AI assistant. I will ask you a question. | |
| YOUR ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. | |
| If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. | |
| If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. | |
| If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. | |
| Do not add a dot after the numbers. | |
| Do not report on your thoughts. Do not provide explanations. | |
| {context_section} | |
| Question: {question} | |
| Answer:""" | |
| try: | |
| response = self._chat_completion(answer_prompt, max_tokens=500, temperature=0.3) | |
| response = remove_thinking_tags(response) | |
| return response | |
| except Exception as e: | |
| return f"Sorry, I encountered an error generating the response: {e}" | |
| def _answer_with_search(self, question: str, attachment_context: str = "", url_context: str = "") -> str: | |
| """ | |
| Generate answer using search results and LLM, considering attachment and URL context. | |
| """ | |
| try: | |
| # Perform search | |
| time.sleep(10) | |
| search_results = self.search(question) | |
| if self.debug: | |
| print(f"Search results type: {type(search_results)}") | |
| if not search_results: | |
| return "No search results found. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question, attachment_context, url_context) | |
| # Format search results - handle different result formats | |
| if isinstance(search_results, str): | |
| search_context = search_results | |
| else: | |
| # Handle list of results | |
| formatted_results = [] | |
| for i, result in enumerate(search_results[:3]): # Use top 3 results | |
| if isinstance(result, dict): | |
| title = result.get("title", "No title") | |
| snippet = result.get("snippet", "").strip() | |
| link = result.get("link", "") | |
| formatted_results.append(f"Title: {title}\nContent: {snippet}\nSource: {link}") | |
| elif isinstance(result, str): | |
| formatted_results.append(result) | |
| else: | |
| formatted_results.append(str(result)) | |
| search_context = "\n\n".join(formatted_results) | |
| # Generate answer using search context, attachment context, and URL context | |
| context_sections = [f"Search Results:\n{search_context}"] | |
| if attachment_context: | |
| context_sections.append(f"Attachment Context:\n{attachment_context}") | |
| if url_context: | |
| context_sections.append(f"URL Content:\n{url_context}") | |
| full_context = "\n\n".join(context_sections) | |
| answer_prompt = f"""You are a general AI assistant. I will ask you a question. | |
| Based on the search results and the context sections below, provide an answer to the question. | |
| If the search results don't fully answer the question, you can supplement with information from other context sections or your general knowledge. | |
| Your ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. | |
| Do not add dot if your answer is a number. | |
| If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. | |
| If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. | |
| If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. | |
| Do not report on your thoughts. Do not provide explanations. | |
| Question: {question} | |
| {full_context} | |
| Answer:""" | |
| try: | |
| response = self._chat_completion(answer_prompt, max_tokens=600, temperature=0.3) | |
| return response | |
| except Exception as e: | |
| if self.debug: | |
| print(f"LLM generation error: {e}") | |
| # Fallback to simple search result formatting | |
| if search_results: | |
| if isinstance(search_results, str): | |
| return search_results | |
| elif isinstance(search_results, list) and len(search_results) > 0: | |
| first_result = search_results[0] | |
| if isinstance(first_result, dict): | |
| title = first_result.get("title", "Search Result") | |
| snippet = first_result.get("snippet", "").strip() | |
| link = first_result.get("link", "") | |
| return f"**{title}**\n\n{snippet}\n\n{f'Source: {link}' if link else ''}" | |
| else: | |
| return str(first_result) | |
| else: | |
| return str(search_results) | |
| else: | |
| return "Search completed but no usable results found." | |
| except Exception as e: | |
| return f"Search failed: {e}. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question, attachment_context, url_context) | |
| def process_question_with_attachments(self, question_data: dict) -> str: | |
| """ | |
| Process a question that may have attachments and URLs. | |
| """ | |
| question_text = question_data.get('question', '') | |
| if self.debug: | |
| print(f"Processing question with potential attachments and URLs: {question_text[:100]}...") | |
| try: | |
| # Detect and download attachments | |
| image_files, audio_files, code_files = self._detect_and_download_attachments(question_data) | |
| # Process attachments to get context | |
| attachment_context = self._process_attachments(image_files, audio_files, code_files) | |
| if self.debug and attachment_context: | |
| print(f"Attachment context: {attachment_context[:200]}...") | |
| # Decide whether to search | |
| if self._should_search(question_text, attachment_context): | |
| if self.debug: | |
| print("Using search-based approach") | |
| answer = self._answer_with_search(question_text, attachment_context) | |
| else: | |
| if self.debug: | |
| print("Using LLM-only approach") | |
| answer = self._answer_with_llm(question_text, attachment_context) | |
| # Cleanup temporary files | |
| if image_files or audio_files or code_files: | |
| try: | |
| all_files = image_files + audio_files + code_files | |
| temp_dirs = set(os.path.dirname(f) for f in all_files) | |
| for temp_dir in temp_dirs: | |
| import shutil | |
| shutil.rmtree(temp_dir, ignore_errors=True) | |
| except Exception as cleanup_error: | |
| if self.debug: | |
| print(f"Cleanup error: {cleanup_error}") | |
| except Exception as e: | |
| answer = f"Sorry, I encountered an error: {e}" | |
| if self.debug: | |
| print(f"Agent returning answer: {answer[:100]}...") | |
| return answer | |
| def __call__(self, question: str, image_files: List[str] = None, audio_files: List[str] = None) -> str: | |
| """ | |
| Main entry point for manual testing - process media files and generate response. | |
| """ | |
| if self.debug: | |
| print(f"Agent received question: {question}") | |
| print(f"Image files: {image_files}") | |
| print(f"Audio files: {audio_files}") | |
| # Early validation | |
| if not question or not question.strip(): | |
| return "Please provide a valid question." | |
| try: | |
| # Process media files first | |
| attachment_context = self._process_attachments(image_files, audio_files, []) | |
| if self.debug and attachment_context: | |
| print(f"Media context: {attachment_context[:200]}...") | |
| # Decide whether to search | |
| if self._should_search(question, attachment_context): | |
| if self.debug: | |
| print("Using search-based approach") | |
| answer = self._answer_with_search(question, attachment_context) | |
| else: | |
| if self.debug: | |
| print("Using LLM-only approach") | |
| answer = self._answer_with_llm(question, attachment_context) | |
| except Exception as e: | |
| answer = f"Sorry, I encountered an error: {e}" | |
| if self.debug: | |
| print(f"Agent returning answer: {answer[:100]}...") | |
| return answer | |
| def fetch_questions() -> Tuple[str, Optional[pd.DataFrame]]: | |
| """ | |
| Fetch questions from the API and cache them. | |
| """ | |
| global cached_questions | |
| api_url = DEFAULT_API_URL | |
| questions_url = f"{api_url}/questions" | |
| print(f"Fetching questions from: {questions_url}") | |
| try: | |
| response = requests.get(questions_url, timeout=15) | |
| response.raise_for_status() | |
| questions_data = response.json() | |
| if not questions_data: | |
| return "Fetched questions list is empty.", None | |
| cached_questions = questions_data | |
| # Create DataFrame for display | |
| display_data = [] | |
| for item in questions_data: | |
| # Check for attachments | |
| has_attachments = False | |
| attachment_info = "" | |
| # Check various fields for attachments | |
| attachment_fields = ['attachments', 'files', 'media', 'resources'] | |
| for field in attachment_fields: | |
| if field in item and item[field]: | |
| has_attachments = True | |
| if isinstance(item[field], list): | |
| attachment_info += f"{len(item[field])} {field}, " | |
| else: | |
| attachment_info += f"{field}, " | |
| # Check if question contains URLs | |
| question_text = item.get("question", "") | |
| if 'http' in question_text: | |
| has_attachments = True | |
| attachment_info += "URLs in text, " | |
| if attachment_info: | |
| attachment_info = attachment_info.rstrip(", ") | |
| display_data.append({ | |
| "Task ID": item.get("task_id", "Unknown"), | |
| "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, | |
| "Has Attachments": "Yes" if has_attachments else "No", | |
| "Attachment Info": attachment_info | |
| }) | |
| df = pd.DataFrame(display_data) | |
| attachment_count = sum(1 for item in display_data if item["Has Attachments"] == "Yes") | |
| status_msg = f"Successfully fetched {len(questions_data)} questions. {attachment_count} questions have attachments. Ready to generate answers." | |
| return status_msg, df | |
| except requests.exceptions.RequestException as e: | |
| return f"Error fetching questions: {e}", None | |
| except Exception as e: | |
| return f"An unexpected error occurred: {e}", None | |
| def generate_answers_async(model_name: str = "meta-llama/Llama-3.1-8B-Instruct", progress_callback=None): | |
| """ | |
| Generate answers for all cached questions asynchronously using the intelligent agent. | |
| """ | |
| global cached_answers, processing_status | |
| if not cached_questions: | |
| return "No questions available. Please fetch questions first." | |
| processing_status["is_processing"] = True | |
| processing_status["progress"] = 0 | |
| processing_status["total"] = len(cached_questions) | |
| try: | |
| agent = IntelligentAgent(debug=True, model_name=model_name) | |
| cached_answers = {} | |
| for i, question_data in enumerate(cached_questions): | |
| if not processing_status["is_processing"]: # Check if cancelled | |
| break | |
| task_id = question_data.get("task_id") | |
| question_text = question_data.get("question") | |
| if not task_id or question_text is None: | |
| continue | |
| try: | |
| # Use the new method that handles attachments | |
| answer = agent.process_question_with_attachments(question_data) | |
| cached_answers[task_id] = { | |
| "question": question_text, | |
| "answer": answer | |
| } | |
| except Exception as e: | |
| cached_answers[task_id] = { | |
| "question": question_text, | |
| "answer": f"AGENT ERROR: {e}" | |
| } | |
| processing_status["progress"] = i + 1 | |
| if progress_callback: | |
| progress_callback(i + 1, len(cached_questions)) | |
| except Exception as e: | |
| print(f"Error in generate_answers_async: {e}") | |
| finally: | |
| processing_status["is_processing"] = False | |
| def start_answer_generation(model_choice: str): | |
| """ | |
| Start the answer generation process in a separate thread. | |
| """ | |
| if processing_status["is_processing"]: | |
| return "Answer generation is already in progress." | |
| if not cached_questions: | |
| return "No questions available. Please fetch questions first." | |
| # Map model choice to actual model name | |
| model_map = { | |
| "Llama 3.1 8B": "meta-llama/Llama-3.1-8B-Instruct", | |
| "Llama 3.3 70B": "meta-llama/Llama-3.3-70B-Instruct", | |
| "Mistral 7B": "mistralai/Mistral-7B-Instruct-v0.3", | |
| "Qwen 2.5": "Qwen/Qwen‑2.5‑Omni‑7B", | |
| "Qwen 3": "Qwen/Qwen3-32B" | |
| } | |
| selected_model = model_map.get(model_choice, "meta-llama/Llama-3.1-8B-Instruct") | |
| # Start generation in background thread | |
| thread = threading.Thread(target=generate_answers_async, args=(selected_model,)) | |
| thread.daemon = True | |
| thread.start() | |
| return f"Answer generation started using {model_choice}. Check progress." | |
| def get_generation_progress(): | |
| """ | |
| Get the current progress of answer generation. | |
| """ | |
| if not processing_status["is_processing"] and processing_status["progress"] == 0: | |
| return "Not started" | |
| if processing_status["is_processing"]: | |
| progress = processing_status["progress"] | |
| total = processing_status["total"] | |
| status_msg = f"Generating answers... {progress}/{total} completed" | |
| return status_msg | |
| else: | |
| # Generation completed | |
| if cached_answers: | |
| # Create DataFrame with results | |
| display_data = [] | |
| for task_id, data in cached_answers.items(): | |
| display_data.append({ | |
| "Task ID": task_id, | |
| "Question": data["question"][:100] + "..." if len(data["question"]) > 100 else data["question"], | |
| "Generated Answer": data["answer"][:200] + "..." if len(data["answer"]) > 200 else data["answer"] | |
| }) | |
| df = pd.DataFrame(display_data) | |
| status_msg = f"Answer generation completed! {len(cached_answers)} answers ready for submission." | |
| return status_msg, df | |
| else: | |
| return "Answer generation completed but no answers were generated." | |
| def submit_cached_answers(profile: gr.OAuthProfile | None): | |
| """ | |
| Submit the cached answers to the evaluation API. | |
| """ | |
| global cached_answers | |
| if not profile: | |
| return "Please log in to Hugging Face first.", None | |
| if not cached_answers: | |
| return "No cached answers available. Please generate answers first.", None | |
| username = profile.username | |
| space_id = os.getenv("SPACE_ID") | |
| agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Unknown" | |
| # Prepare submission payload | |
| answers_payload = [] | |
| for task_id, data in cached_answers.items(): | |
| answers_payload.append({ | |
| "task_id": task_id, | |
| "submitted_answer": data["answer"] | |
| }) | |
| submission_data = { | |
| "username": username.strip(), | |
| "agent_code": agent_code, | |
| "answers": answers_payload | |
| } | |
| # Submit to API | |
| api_url = DEFAULT_API_URL | |
| submit_url = f"{api_url}/submit" | |
| print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
| try: | |
| response = requests.post(submit_url, json=submission_data, timeout=60) | |
| response.raise_for_status() | |
| result_data = response.json() | |
| final_status = ( | |
| f"Submission Successful!\n" | |
| f"User: {result_data.get('username')}\n" | |
| f"Overall Score: {result_data.get('score', 'N/A')}% " | |
| f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
| f"Message: {result_data.get('message', 'No message received.')}" | |
| ) | |
| # Create results DataFrame | |
| results_log = [] | |
| for task_id, data in cached_answers.items(): | |
| results_log.append({ | |
| "Task ID": task_id, | |
| "Question": data["question"], | |
| "Submitted Answer": data["answer"] | |
| }) | |
| results_df = pd.DataFrame(results_log) | |
| return final_status, results_df | |
| except requests.exceptions.HTTPError as e: | |
| error_detail = f"Server responded with status {e.response.status_code}." | |
| try: | |
| error_json = e.response.json() | |
| error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
| except: | |
| error_detail += f" Response: {e.response.text[:500]}" | |
| return f"Submission Failed: {error_detail}", None | |
| except requests.exceptions.Timeout: | |
| return "Submission Failed: The request timed out.", None | |
| except Exception as e: | |
| return f"Submission Failed: {e}", None | |
| def clear_cache(): | |
| """ | |
| Clear all cached data. | |
| """ | |
| global cached_answers, cached_questions, processing_status | |
| cached_answers = {} | |
| cached_questions = [] | |
| processing_status = {"is_processing": False, "progress": 0, "total": 0} | |
| return "Cache cleared successfully.", None | |
| def test_media_processing(image_files, audio_files, question): | |
| """ | |
| Test the media processing functionality with uploaded files. | |
| """ | |
| if not question: | |
| question = "What can you tell me about the uploaded media?" | |
| agent = IntelligentAgent(debug=True) | |
| # Convert file paths to lists | |
| image_paths = [img.name for img in image_files] if image_files else None | |
| audio_paths = [aud.name for aud in audio_files] if audio_files else None | |
| try: | |
| result = agent(question, image_files=image_paths, audio_files=audio_paths) | |
| return result | |
| except Exception as e: | |
| return f"Error processing media: {e}" | |
| # --- Enhanced Gradio Interface --- | |
| with gr.Blocks(title="Intelligent Agent with Media Processing") as demo: | |
| gr.Markdown("# Intelligent Agent with Conditional Search and Media Processing") | |
| gr.Markdown("This agent can process images and audio files, uses an LLM to decide when search is needed, optimizing for both accuracy and efficiency.") | |
| with gr.Row(): | |
| gr.LoginButton() | |
| clear_btn = gr.Button("Clear Cache", variant="secondary") | |
| with gr.Tab("Step 1: Fetch Questions"): | |
| gr.Markdown("### Fetch Questions from API") | |
| fetch_btn = gr.Button("Fetch Questions", variant="primary") | |
| fetch_status = gr.Textbox(label="Fetch Status", lines=2, interactive=False) | |
| questions_table = gr.DataFrame(label="Available Questions", wrap=True) | |
| fetch_btn.click( | |
| fn=fetch_questions, | |
| outputs=[fetch_status, questions_table] | |
| ) | |
| with gr.Tab("Step 2: Generate Answers"): | |
| gr.Markdown("### Generate Answers with Intelligent Search Decision") | |
| with gr.Row(): | |
| model_choice = gr.Dropdown( | |
| choices=["Llama 3.1 8B", "Llama 3.3 70B", "Mistral 7B", "Qwen 2.5", "Qwen 3"], | |
| value="Llama 3.1 8B", | |
| label="Select Model" | |
| ) | |
| generate_btn = gr.Button("Start Answer Generation", variant="primary") | |
| refresh_btn = gr.Button("Refresh Progress", variant="secondary") | |
| generation_status = gr.Textbox(label="Generation Status", lines=2, interactive=False) | |
| answers_table = gr.DataFrame(label="Generated Answers", wrap=True) | |
| generate_btn.click( | |
| fn=start_answer_generation, | |
| inputs=[model_choice], | |
| outputs=generation_status | |
| ) | |
| refresh_btn.click( | |
| fn=get_generation_progress, | |
| outputs=[generation_status, answers_table] | |
| ) | |
| with gr.Tab("Step 3: Submit Results"): | |
| gr.Markdown("### Submit Generated Answers") | |
| submit_btn = gr.Button("Submit Answers", variant="primary") | |
| submit_status = gr.Textbox(label="Submission Status", lines=4, interactive=False) | |
| results_table = gr.DataFrame(label="Submission Results", wrap=True) | |
| submit_btn.click( | |
| fn=submit_cached_answers, | |
| outputs=[submit_status, results_table] | |
| ) | |
| # Clear cache functionality | |
| clear_btn.click( | |
| fn=clear_cache, | |
| outputs=[fetch_status, questions_table] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |