tatianija's picture
Update app.py
b0ffe80 verified
raw
history blame
34.9 kB
import os
import gradio as gr
import requests
import inspect
import time
import pandas as pd
from smolagents import DuckDuckGoSearchTool
import threading
from typing import Dict, List, Optional, Tuple, Union
import json
from huggingface_hub import InferenceClient
import base64
from PIL import Image
import io
import tempfile
import urllib.parse
from pathlib import Path
import re
from bs4 import BeautifulSoup
import mimetypes
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Global Cache for Answers ---
cached_answers = {}
cached_questions = []
processing_status = {"is_processing": False, "progress": 0, "total": 0}
# --- Web Content Fetcher ---
class WebContentFetcher:
def __init__(self, debug: bool = True):
self.debug = debug
self.session = requests.Session()
self.session.headers.update({
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
})
def extract_urls_from_text(self, text: str) -> List[str]:
"""Extract URLs from text using regex."""
url_pattern = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
urls = re.findall(url_pattern, text)
return list(set(urls)) # Remove duplicates
def fetch_url_content(self, url: str) -> Dict[str, str]:
"""
Fetch content from a URL and extract text, handling different content types.
Returns a dictionary with 'content', 'title', 'content_type', and 'error' keys.
"""
try:
# Clean the URL
url = url.strip()
if not url.startswith(('http://', 'https://')):
url = 'https://' + url
if self.debug:
print(f"Fetching URL: {url}")
response = self.session.get(url, timeout=30, allow_redirects=True)
response.raise_for_status()
content_type = response.headers.get('content-type', '').lower()
result = {
'url': url,
'content_type': content_type,
'title': '',
'content': '',
'error': None
}
# Handle different content types
if 'text/html' in content_type:
# Parse HTML content
soup = BeautifulSoup(response.content, 'html.parser')
# Extract title
title_tag = soup.find('title')
result['title'] = title_tag.get_text().strip() if title_tag else 'No title'
# Remove script and style elements
for script in soup(["script", "style"]):
script.decompose()
# Extract text content
text_content = soup.get_text()
# Clean up text
lines = (line.strip() for line in text_content.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text_content = ' '.join(chunk for chunk in chunks if chunk)
# Limit content length
if len(text_content) > 8000:
text_content = text_content[:8000] + "... (truncated)"
result['content'] = text_content
elif 'text/plain' in content_type:
# Handle plain text
text_content = response.text
if len(text_content) > 8000:
text_content = text_content[:8000] + "... (truncated)"
result['content'] = text_content
result['title'] = f"Text document from {url}"
elif 'application/json' in content_type:
# Handle JSON content
try:
json_data = response.json()
result['content'] = json.dumps(json_data, indent=2)[:8000]
result['title'] = f"JSON document from {url}"
except:
result['content'] = response.text[:8000]
result['title'] = f"JSON document from {url}"
elif any(x in content_type for x in ['application/pdf', 'application/msword', 'application/vnd.openxmlformats']):
# Handle document files
result['content'] = f"Document file detected ({content_type}). Content extraction for this file type is not implemented."
result['title'] = f"Document from {url}"
else:
# Handle other content types
if response.text:
content = response.text[:8000]
result['content'] = content
result['title'] = f"Content from {url}"
else:
result['content'] = f"Non-text content detected ({content_type})"
result['title'] = f"File from {url}"
if self.debug:
print(f"Successfully fetched content from {url}: {len(result['content'])} characters")
return result
except requests.exceptions.RequestException as e:
error_msg = f"Failed to fetch {url}: {str(e)}"
if self.debug:
print(error_msg)
return {
'url': url,
'content_type': 'error',
'title': f"Error fetching {url}",
'content': '',
'error': error_msg
}
except Exception as e:
error_msg = f"Unexpected error fetching {url}: {str(e)}"
if self.debug:
print(error_msg)
return {
'url': url,
'content_type': 'error',
'title': f"Error fetching {url}",
'content': '',
'error': error_msg
}
def fetch_multiple_urls(self, urls: List[str]) -> List[Dict[str, str]]:
"""Fetch content from multiple URLs."""
results = []
for url in urls[:5]: # Limit to 5 URLs to avoid excessive processing
result = self.fetch_url_content(url)
results.append(result)
time.sleep(1) # Be respectful to servers
return results
# --- File Processing Utility ---
def save_attachment_to_file(attachment_data: Union[str, bytes, dict], temp_dir: str, file_name: str = None) -> Optional[str]:
"""
Save attachment data to a temporary file.
Returns the local file path if successful, None otherwise.
"""
try:
# Determine file name and extension
if not file_name:
file_name = f"attachment_{int(time.time())}"
# Handle different data types
if isinstance(attachment_data, dict):
# Handle dict with file data
if 'data' in attachment_data:
file_data = attachment_data['data']
file_type = attachment_data.get('type', '').lower()
original_name = attachment_data.get('name', file_name)
elif 'content' in attachment_data:
file_data = attachment_data['content']
file_type = attachment_data.get('mime_type', '').lower()
original_name = attachment_data.get('filename', file_name)
else:
# Try to use the dict as file data directly
file_data = str(attachment_data)
file_type = ''
original_name = file_name
# Use original name if available
if original_name and original_name != file_name:
file_name = original_name
elif isinstance(attachment_data, str):
# Could be base64 encoded data or plain text
file_data = attachment_data
file_type = ''
elif isinstance(attachment_data, bytes):
# Binary data
file_data = attachment_data
file_type = ''
else:
print(f"Unknown attachment data type: {type(attachment_data)}")
return None
# Ensure file has an extension
if '.' not in file_name:
# Try to determine extension from type
if 'image' in file_type:
if 'jpeg' in file_type or 'jpg' in file_type:
file_name += '.jpg'
elif 'png' in file_type:
file_name += '.png'
else:
file_name += '.img'
elif 'audio' in file_type:
if 'mp3' in file_type:
file_name += '.mp3'
elif 'wav' in file_type:
file_name += '.wav'
else:
file_name += '.audio'
elif 'python' in file_type or 'text' in file_type:
file_name += '.py'
else:
file_name += '.file'
file_path = os.path.join(temp_dir, file_name)
# Save the file
if isinstance(file_data, str):
# Try to decode if it's base64
try:
# Check if it looks like base64
if len(file_data) > 100 and '=' in file_data[-5:]:
decoded_data = base64.b64decode(file_data)
with open(file_path, 'wb') as f:
f.write(decoded_data)
else:
# Plain text
with open(file_path, 'w', encoding='utf-8') as f:
f.write(file_data)
except:
# If base64 decode fails, save as text
with open(file_path, 'w', encoding='utf-8') as f:
f.write(file_data)
else:
# Binary data
with open(file_path, 'wb') as f:
f.write(file_data)
print(f"Saved attachment: {file_path}")
return file_path
except Exception as e:
print(f"Failed to save attachment: {e}")
return None
# --- Code Processing Tool ---
class CodeAnalysisTool:
def __init__(self, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"):
self.client = InferenceClient(model=model_name, provider="sambanova")
def analyze_code(self, code_path: str) -> str:
"""
Analyze Python code and return insights.
"""
try:
with open(code_path, 'r', encoding='utf-8') as f:
code_content = f.read()
# Limit code length for analysis
if len(code_content) > 5000:
code_content = code_content[:5000] + "\n... (truncated)"
analysis_prompt = f"""Analyze this Python code and provide a concise summary of:
1. What the code does (main functionality)
2. Key functions/classes
3. Any notable patterns or issues
4. Input/output behavior if applicable
Code:
```python
{code_content}
```
Provide a brief, focused analysis:"""
messages = [{"role": "user", "content": analysis_prompt}]
response = self.client.chat_completion(
messages=messages,
max_tokens=500,
temperature=0.3
)
return response.choices[0].message.content.strip()
except Exception as e:
return f"Code analysis failed: {e}"
# --- Image Processing Tool ---
class ImageAnalysisTool:
def __init__(self, model_name: str = "microsoft/Florence-2-large"):
self.client = InferenceClient(model=model_name)
def analyze_image(self, image_path: str, prompt: str = "Describe this image in detail") -> str:
"""
Analyze an image and return a description.
"""
try:
# Open and process the image
with open(image_path, "rb") as f:
image_bytes = f.read()
# Use the vision model to analyze the image
response = self.client.image_to_text(
image=image_bytes,
model="microsoft/Florence-2-large"
)
return response.get("generated_text", "Could not analyze image")
except Exception as e:
try:
# Fallback: use a different vision model
response = self.client.image_to_text(
image=image_bytes,
model="Salesforce/blip-image-captioning-large"
)
return response.get("generated_text", f"Image analysis error: {e}")
except:
return f"Image analysis failed: {e}"
def extract_text_from_image(self, image_path: str) -> str:
"""
Extract text from an image using OCR.
"""
try:
with open(image_path, "rb") as f:
image_bytes = f.read()
# Use an OCR model
response = self.client.image_to_text(
image=image_bytes,
model="microsoft/trocr-base-printed"
)
return response.get("generated_text", "No text found in image")
except Exception as e:
return f"OCR failed: {e}"
# --- Audio Processing Tool ---
class AudioTranscriptionTool:
def __init__(self, model_name: str = "openai/whisper-large-v3"):
self.client = InferenceClient(model=model_name)
def transcribe_audio(self, audio_path: str) -> str:
"""
Transcribe audio file to text.
"""
try:
with open(audio_path, "rb") as f:
audio_bytes = f.read()
# Use Whisper for transcription
response = self.client.automatic_speech_recognition(
audio=audio_bytes
)
return response.get("text", "Could not transcribe audio")
except Exception as e:
try:
# Fallback to a different ASR model
response = self.client.automatic_speech_recognition(
audio=audio_bytes,
model="facebook/wav2vec2-large-960h-lv60-self"
)
return response.get("text", f"Audio transcription error: {e}")
except:
return f"Audio transcription failed: {e}"
# --- Enhanced Intelligent Agent with Direct Attachment Processing ---
class IntelligentAgent:
def __init__(self, debug: bool = True, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"):
self.search = DuckDuckGoSearchTool()
self.client = InferenceClient(model=model_name, provider="sambanova")
self.image_tool = ImageAnalysisTool()
self.audio_tool = AudioTranscriptionTool()
self.code_tool = CodeAnalysisTool(model_name)
self.web_fetcher = WebContentFetcher(debug)
self.debug = debug
if self.debug:
print(f"IntelligentAgent initialized with model: {model_name}")
def _chat_completion(self, prompt: str, max_tokens: int = 500, temperature: float = 0.3) -> str:
"""
Use chat completion instead of text generation to avoid provider compatibility issues.
"""
try:
messages = [{"role": "user", "content": prompt}]
# Try chat completion first
try:
response = self.client.chat_completion(
messages=messages,
max_tokens=max_tokens,
temperature=temperature
)
return response.choices[0].message.content.strip()
except Exception as chat_error:
if self.debug:
print(f"Chat completion failed: {chat_error}, trying text generation...")
# Fallback to text generation
response = self.client.conversational(
prompt,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=temperature > 0
)
return response.strip()
except Exception as e:
if self.debug:
print(f"Both chat completion and text generation failed: {e}")
raise e
def _extract_and_process_urls(self, question_text: str) -> str:
"""
Extract URLs from question text and fetch their content.
Returns formatted content from all URLs.
"""
urls = self.web_fetcher.extract_urls_from_text(question_text)
if not urls:
return ""
if self.debug:
print(f"...Found {len(urls)} URLs in question: {urls}")
url_contents = self.web_fetcher.fetch_multiple_urls(urls)
if not url_contents:
return ""
# Format the content
formatted_content = []
for content_data in url_contents:
if content_data['error']:
formatted_content.append(f"URL: {content_data['url']}\nError: {content_data['error']}")
else:
formatted_content.append(
f"URL: {content_data['url']}\n"
f"Title: {content_data['title']}\n"
f"Content Type: {content_data['content_type']}\n"
f"Content: {content_data['content']}"
)
return "\n\n" + "="*50 + "\n".join(formatted_content) + "\n" + "="*50
def _detect_and_process_direct_attachments(self, file_name: str) -> Tuple[List[str], List[str], List[str]]:
"""
Detect and process a single attachment directly attached to a question (not as a URL).
Returns (image_files, audio_files, code_files)
"""
image_files = []
audio_files = []
code_files = []
if not file_name:
return image_files, audio_files, code_files
try:
# Construct the file path (assuming file is in current directory)
file_path = os.path.join(os.getcwd(), file_name)
# Check if file exists
if not os.path.exists(file_path):
if self.debug:
print(f"File not found: {file_path}")
return image_files, audio_files, code_files
# Get file extension
file_ext = Path(file_name).suffix.lower()
# Determine category
is_image = (
file_ext in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp', '.tiff']
)
is_audio = (
file_ext in ['.mp3', '.wav', '.m4a', '.ogg', '.flac', '.aac']
)
is_code = (
file_ext in ['.py', '.txt', '.js', '.html', '.css', '.json', '.xml', '.md', '.c', '.cpp', '.java']
)
# Categorize the file
if is_image:
image_files.append(file_path)
elif is_audio:
audio_files.append(file_path)
elif is_code:
code_files.append(file_path)
else:
# Default to code/text for unknown types
code_files.append(file_path)
if self.debug:
print(f"Processed file: {file_name} -> {'image' if is_image else 'audio' if is_audio else 'code'}")
except Exception as e:
if self.debug:
print(f"Error processing attachment {file_name}: {e}")
if self.debug:
print(f"Processed attachment: {len(image_files)} images, {len(audio_files)} audio, {len(code_files)} code files")
return image_files, audio_files, code_files
def process_question_with_attachments(self, question_data: dict) -> str:
"""
Process a question that may have attachments and URLs.
"""
question_text = question_data.get('question', '')
if self.debug:
print(f"Question data keys: {list(question_data.keys())}")
print(f"\n1. Processing question with potential attachments and URLs: {question_text[:300]}...")
try:
# Detect and process URLs
if self.debug:
print(f"2. Detecting and processing URLs...")
url_context = self._extract_and_process_urls(question_text)
if self.debug and url_context:
print(f"URL context found: {len(url_context)} characters")
except Exception as e:
if self.debug:
print(f"Error extracting URLs: {e}")
url_context = ""
try:
# Detect and download attachments
if self.debug:
print(f"3. Searching for images, audio or code attachments...")
attachment_name = question_data.get('file_name', '')
if self.debug:
print(f"Attachment name from question_data: '{attachment_name}'")
image_files, audio_files, code_files = self._detect_and_process_direct_attachments(attachment_name)
# Process attachments to get context
attachment_context = self._process_attachments(image_files, audio_files, code_files)
if self.debug and attachment_context:
print(f"Attachment context: {attachment_context[:200]}...")
# Decide whether to search
if self._should_search(question_text, attachment_context, url_context):
if self.debug:
print("5. Using search-based approach")
answer = self._answer_with_search(question_text, attachment_context, url_context)
else:
if self.debug:
print("5. Using LLM-only approach")
answer = self._answer_with_llm(question_text, attachment_context, url_context)
if self.debug:
print(f"LLM answer: {answer}")
# Note: We don't cleanup files here since they're not temporary files we created
# They are actual files in the working directory
except Exception as e:
if self.debug:
print(f"Error in attachment processing: {e}")
answer = f"Sorry, I encountered an error: {e}"
if self.debug:
print(f"6. Agent returning answer: {answer[:100]}...")
return answer
def fetch_questions() -> Tuple[str, Optional[pd.DataFrame]]:
"""
Fetch questions from the API and cache them.
"""
global cached_questions
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty.", None
cached_questions = questions_data
# Create DataFrame for display
display_data = []
for item in questions_data:
# Check for attachments
has_attachments = False
attachment_info = ""
# Check various fields for attachments
attachment_fields = ['attachments', 'files', 'media', 'resources']
for field in attachment_fields:
if field in item and item[field]:
has_attachments = True
if isinstance(item[field], list):
attachment_info += f"{len(item[field])} {field}, "
else:
attachment_info += f"{field}, "
# Check if question contains URLs
question_text = item.get("question", "")
if 'http' in question_text:
has_attachments = True
attachment_info += "URLs in text, "
if attachment_info:
attachment_info = attachment_info.rstrip(", ")
display_data.append({
"Task ID": item.get("task_id", "Unknown"),
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Has Attachments": "Yes" if has_attachments else "No",
"Attachment Info": attachment_info
})
df = pd.DataFrame(display_data)
attachment_count = sum(1 for item in display_data if item["Has Attachments"] == "Yes")
status_msg = f"Successfully fetched {len(questions_data)} questions. {attachment_count} questions have attachments. Ready to generate answers."
return status_msg, df
except requests.exceptions.RequestException as e:
return f"Error fetching questions: {e}", None
except Exception as e:
return f"An unexpected error occurred: {e}", None
def generate_answers_async(model_name: str = "meta-llama/Llama-3.1-8B-Instruct", progress_callback=None):
"""
Generate answers for all cached questions asynchronously using the intelligent agent.
"""
global cached_answers, processing_status
if not cached_questions:
return "No questions available. Please fetch questions first."
processing_status["is_processing"] = True
processing_status["progress"] = 0
processing_status["total"] = len(cached_questions)
try:
agent = IntelligentAgent(debug=True, model_name=model_name)
cached_answers = {}
for i, question_data in enumerate(cached_questions):
if not processing_status["is_processing"]: # Check if cancelled
break
task_id = question_data.get("task_id")
question_text = question_data.get("question")
if not task_id or question_text is None:
continue
try:
# Use the new method that handles attachments
answer = agent.process_question_with_attachments(question_data)
cached_answers[task_id] = {
"question": question_text,
"answer": answer
}
except Exception as e:
cached_answers[task_id] = {
"question": question_text,
"answer": f"AGENT ERROR: {e}"
}
processing_status["progress"] = i + 1
if progress_callback:
progress_callback(i + 1, len(cached_questions))
except Exception as e:
print(f"Error in generate_answers_async: {e}")
finally:
processing_status["is_processing"] = False
def start_answer_generation(model_choice: str):
"""
Start the answer generation process in a separate thread.
"""
if processing_status["is_processing"]:
return "Answer generation is already in progress."
if not cached_questions:
return "No questions available. Please fetch questions first."
# Map model choice to actual model name
model_map = {
"Llama 3.1 8B": "meta-llama/Llama-3.1-8B-Instruct",
"Llama 3.3 70B": "meta-llama/Llama-3.3-70B-Instruct",
"Llama 3.3 Shallow 70B": "tokyotech-llm/Llama-3.3-Swallow-70B-Instruct-v0.4",
"Mistral 7B": "mistralai/Mistral-7B-Instruct-v0.3",
"Qwen 2.5": "Qwen/Qwen‑2.5‑Omni‑7B",
#"Qwen 2.5 instruct": "Qwen/Qwen2.5-14B-Instruct-1M",
"Qwen 3": "Qwen/Qwen3-32B"
}
selected_model = model_map.get(model_choice, "meta-llama/Llama-3.1-8B-Instruct")
# Start generation in background thread
thread = threading.Thread(target=generate_answers_async, args=(selected_model,))
thread.daemon = True
thread.start()
return f"Answer generation started using {model_choice}. Check progress."
def get_generation_progress():
"""
Get the current progress of answer generation.
"""
if not processing_status["is_processing"] and processing_status["progress"] == 0:
return "Not started"
if processing_status["is_processing"]:
progress = processing_status["progress"]
total = processing_status["total"]
status_msg = f"Generating answers... {progress}/{total} completed"
return status_msg
else:
# Generation completed
if cached_answers:
# Create DataFrame with results
display_data = []
for task_id, data in cached_answers.items():
display_data.append({
"Task ID": task_id,
"Question": data["question"][:100] + "..." if len(data["question"]) > 100 else data["question"],
"Generated Answer": data["answer"][:200] + "..." if len(data["answer"]) > 200 else data["answer"]
})
df = pd.DataFrame(display_data)
status_msg = f"Answer generation completed! {len(cached_answers)} answers ready for submission."
return status_msg, df
else:
return "Answer generation completed but no answers were generated."
def submit_cached_answers(profile: gr.OAuthProfile | None):
"""
Submit the cached answers to the evaluation API.
"""
global cached_answers
if not profile:
return "Please log in to Hugging Face first.", None
if not cached_answers:
return "No cached answers available. Please generate answers first.", None
username = profile.username
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Unknown"
# Prepare submission payload
answers_payload = []
for task_id, data in cached_answers.items():
answers_payload.append({
"task_id": task_id,
"submitted_answer": data["answer"]
})
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
# Submit to API
api_url = DEFAULT_API_URL
submit_url = f"{api_url}/submit"
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
# Create results DataFrame
results_log = []
for task_id, data in cached_answers.items():
results_log.append({
"Task ID": task_id,
"Question": data["question"],
"Submitted Answer": data["answer"]
})
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except:
error_detail += f" Response: {e.response.text[:500]}"
return f"Submission Failed: {error_detail}", None
except requests.exceptions.Timeout:
return "Submission Failed: The request timed out.", None
except Exception as e:
return f"Submission Failed: {e}", None
def clear_cache():
"""
Clear all cached data.
"""
global cached_answers, cached_questions, processing_status
cached_answers = {}
cached_questions = []
processing_status = {"is_processing": False, "progress": 0, "total": 0}
return "Cache cleared successfully.", None
# --- Enhanced Gradio Interface ---
with gr.Blocks(title="Intelligent Agent with Media Processing") as demo:
gr.Markdown("# Intelligent Agent with Conditional Search and Media Processing")
gr.Markdown("This agent can process images and audio files, uses an LLM to decide when search is needed, optimizing for both accuracy and efficiency.")
with gr.Row():
gr.LoginButton()
clear_btn = gr.Button("Clear Cache", variant="secondary")
with gr.Tab("Step 1: Fetch Questions"):
gr.Markdown("### Fetch Questions from API")
fetch_btn = gr.Button("Fetch Questions", variant="primary")
fetch_status = gr.Textbox(label="Fetch Status", lines=2, interactive=False)
questions_table = gr.DataFrame(label="Available Questions", wrap=True)
fetch_btn.click(
fn=fetch_questions,
outputs=[fetch_status, questions_table]
)
with gr.Tab("Step 2: Generate Answers"):
gr.Markdown("### Generate Answers with Intelligent Search Decision")
with gr.Row():
model_choice = gr.Dropdown(
choices=["Llama 3.1 8B", "Llama 3.3 70B", "Llama 3.3 Shallow 70B", "Mistral 7B", "Qwen 2.5", "Qwen 3"],
value="Llama 3.1 8B",
label="Select Model"
)
generate_btn = gr.Button("Start Answer Generation", variant="primary")
refresh_btn = gr.Button("Refresh Progress", variant="secondary")
generation_status = gr.Textbox(label="Generation Status", lines=2, interactive=False)
answers_table = gr.DataFrame(label="Generated Answers", wrap=True)
generate_btn.click(
fn=start_answer_generation,
inputs=[model_choice],
outputs=generation_status
)
refresh_btn.click(
fn=get_generation_progress,
outputs=[generation_status, answers_table]
)
with gr.Tab("Step 3: Submit Results"):
gr.Markdown("### Submit Generated Answers")
submit_btn = gr.Button("Submit Answers", variant="primary")
submit_status = gr.Textbox(label="Submission Status", lines=4, interactive=False)
results_table = gr.DataFrame(label="Submission Results", wrap=True)
submit_btn.click(
fn=submit_cached_answers,
outputs=[submit_status, results_table]
)
# Clear cache functionality
clear_btn.click(
fn=clear_cache,
outputs=[fetch_status, questions_table]
)
if __name__ == "__main__":
demo.launch()