Update app.py
Browse files
app.py
CHANGED
@@ -6,9 +6,12 @@ import time
|
|
6 |
import pandas as pd
|
7 |
from smolagents import DuckDuckGoSearchTool
|
8 |
import threading
|
9 |
-
from typing import Dict, List, Optional, Tuple
|
10 |
import json
|
11 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
12 |
|
13 |
# --- Constants ---
|
14 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
@@ -18,12 +21,96 @@ cached_answers = {}
|
|
18 |
cached_questions = []
|
19 |
processing_status = {"is_processing": False, "progress": 0, "total": 0}
|
20 |
|
21 |
-
# ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
class IntelligentAgent:
|
23 |
def __init__(self, debug: bool = True, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"):
|
24 |
self.search = DuckDuckGoSearchTool()
|
25 |
-
self.client = InferenceClient(model=model_name,
|
26 |
-
|
|
|
27 |
self.debug = debug
|
28 |
if self.debug:
|
29 |
print(f"IntelligentAgent initialized with model: {model_name}")
|
@@ -61,6 +148,45 @@ class IntelligentAgent:
|
|
61 |
print(f"Both chat completion and text generation failed: {e}")
|
62 |
raise e
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
def _should_search(self, question: str) -> bool:
|
65 |
"""
|
66 |
Use LLM to determine if search is needed for the question.
|
|
|
6 |
import pandas as pd
|
7 |
from smolagents import DuckDuckGoSearchTool
|
8 |
import threading
|
9 |
+
from typing import Dict, List, Optional, Tuple, Union
|
10 |
import json
|
11 |
from huggingface_hub import InferenceClient
|
12 |
+
import base64
|
13 |
+
from PIL import Image
|
14 |
+
import io
|
15 |
|
16 |
# --- Constants ---
|
17 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
21 |
cached_questions = []
|
22 |
processing_status = {"is_processing": False, "progress": 0, "total": 0}
|
23 |
|
24 |
+
# --- Image Processing Tool ---
|
25 |
+
class ImageAnalysisTool:
|
26 |
+
def __init__(self, model_name: str = "microsoft/Florence-2-large"):
|
27 |
+
self.client = InferenceClient(model=model_name)
|
28 |
+
|
29 |
+
def analyze_image(self, image_path: str, prompt: str = "Describe this image in detail") -> str:
|
30 |
+
"""
|
31 |
+
Analyze an image and return a description.
|
32 |
+
"""
|
33 |
+
try:
|
34 |
+
# Open and process the image
|
35 |
+
with open(image_path, "rb") as f:
|
36 |
+
image_bytes = f.read()
|
37 |
+
|
38 |
+
# Use the vision model to analyze the image
|
39 |
+
response = self.client.image_to_text(
|
40 |
+
image=image_bytes,
|
41 |
+
model="microsoft/Florence-2-large"
|
42 |
+
)
|
43 |
+
|
44 |
+
return response.get("generated_text", "Could not analyze image")
|
45 |
+
|
46 |
+
except Exception as e:
|
47 |
+
try:
|
48 |
+
# Fallback: use a different vision model
|
49 |
+
response = self.client.image_to_text(
|
50 |
+
image=image_bytes,
|
51 |
+
model="Salesforce/blip-image-captioning-large"
|
52 |
+
)
|
53 |
+
return response.get("generated_text", f"Image analysis error: {e}")
|
54 |
+
except:
|
55 |
+
return f"Image analysis failed: {e}"
|
56 |
+
|
57 |
+
def extract_text_from_image(self, image_path: str) -> str:
|
58 |
+
"""
|
59 |
+
Extract text from an image using OCR.
|
60 |
+
"""
|
61 |
+
try:
|
62 |
+
with open(image_path, "rb") as f:
|
63 |
+
image_bytes = f.read()
|
64 |
+
|
65 |
+
# Use an OCR model
|
66 |
+
response = self.client.image_to_text(
|
67 |
+
image=image_bytes,
|
68 |
+
model="microsoft/trocr-base-printed"
|
69 |
+
)
|
70 |
+
|
71 |
+
return response.get("generated_text", "No text found in image")
|
72 |
+
|
73 |
+
except Exception as e:
|
74 |
+
return f"OCR failed: {e}"
|
75 |
+
|
76 |
+
# --- Audio Processing Tool ---
|
77 |
+
class AudioTranscriptionTool:
|
78 |
+
def __init__(self, model_name: str = "openai/whisper-large-v3"):
|
79 |
+
self.client = InferenceClient(model=model_name)
|
80 |
+
|
81 |
+
def transcribe_audio(self, audio_path: str) -> str:
|
82 |
+
"""
|
83 |
+
Transcribe audio file to text.
|
84 |
+
"""
|
85 |
+
try:
|
86 |
+
with open(audio_path, "rb") as f:
|
87 |
+
audio_bytes = f.read()
|
88 |
+
|
89 |
+
# Use Whisper for transcription
|
90 |
+
response = self.client.automatic_speech_recognition(
|
91 |
+
audio=audio_bytes
|
92 |
+
)
|
93 |
+
|
94 |
+
return response.get("text", "Could not transcribe audio")
|
95 |
+
|
96 |
+
except Exception as e:
|
97 |
+
try:
|
98 |
+
# Fallback to a different ASR model
|
99 |
+
response = self.client.automatic_speech_recognition(
|
100 |
+
audio=audio_bytes,
|
101 |
+
model="facebook/wav2vec2-large-960h-lv60-self"
|
102 |
+
)
|
103 |
+
return response.get("text", f"Audio transcription error: {e}")
|
104 |
+
except:
|
105 |
+
return f"Audio transcription failed: {e}"
|
106 |
+
|
107 |
+
# --- Enhanced Intelligent Agent with Media Processing ---
|
108 |
class IntelligentAgent:
|
109 |
def __init__(self, debug: bool = True, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"):
|
110 |
self.search = DuckDuckGoSearchTool()
|
111 |
+
self.client = InferenceClient(model=model_name, provider="sambanova")
|
112 |
+
self.image_tool = ImageAnalysisTool()
|
113 |
+
self.audio_tool = AudioTranscriptionTool()
|
114 |
self.debug = debug
|
115 |
if self.debug:
|
116 |
print(f"IntelligentAgent initialized with model: {model_name}")
|
|
|
148 |
print(f"Both chat completion and text generation failed: {e}")
|
149 |
raise e
|
150 |
|
151 |
+
def _process_media_files(self, image_files: List[str] = None, audio_files: List[str] = None) -> str:
|
152 |
+
"""
|
153 |
+
Process attached media files and return their content as text.
|
154 |
+
"""
|
155 |
+
media_content = []
|
156 |
+
|
157 |
+
# Process images
|
158 |
+
if image_files:
|
159 |
+
for image_file in image_files:
|
160 |
+
if image_file and os.path.exists(image_file):
|
161 |
+
try:
|
162 |
+
# Analyze the image
|
163 |
+
image_description = self.image_tool.analyze_image(image_file)
|
164 |
+
media_content.append(f"Image Analysis: {image_description}")
|
165 |
+
|
166 |
+
# Try to extract text from image
|
167 |
+
extracted_text = self.image_tool.extract_text_from_image(image_file)
|
168 |
+
if extracted_text and "No text found" not in extracted_text:
|
169 |
+
media_content.append(f"Text from Image: {extracted_text}")
|
170 |
+
|
171 |
+
except Exception as e:
|
172 |
+
media_content.append(f"Error processing image {image_file}: {e}")
|
173 |
+
|
174 |
+
# Process audio files
|
175 |
+
if audio_files:
|
176 |
+
for audio_file in audio_files:
|
177 |
+
if audio_file and os.path.exists(audio_file):
|
178 |
+
try:
|
179 |
+
# Transcribe the audio
|
180 |
+
transcription = self.audio_tool.transcribe_audio(audio_file)
|
181 |
+
media_content.append(f"Audio Transcription: {transcription}")
|
182 |
+
|
183 |
+
except Exception as e:
|
184 |
+
media_content.append(f"Error processing audio {audio_file}: {e}")
|
185 |
+
|
186 |
+
return "\n\n".join(media_content) if media_content else ""
|
187 |
+
|
188 |
+
def _should_search(self, question: str, media_context: str
|
189 |
+
|
190 |
def _should_search(self, question: str) -> bool:
|
191 |
"""
|
192 |
Use LLM to determine if search is needed for the question.
|