Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,827 +1,125 @@
|
|
1 |
-
|
2 |
-
import gradio as gr
|
3 |
-
import requests
|
4 |
-
import inspect
|
5 |
-
import time
|
6 |
-
import pandas as pd
|
7 |
-
from smolagents import DuckDuckGoSearchTool
|
8 |
-
import threading
|
9 |
-
from typing import Dict, List, Optional, Tuple, Union
|
10 |
-
import json
|
11 |
-
from huggingface_hub import InferenceClient
|
12 |
-
import base64
|
13 |
-
from PIL import Image
|
14 |
-
import io
|
15 |
-
import tempfile
|
16 |
-
import urllib.parse
|
17 |
-
from pathlib import Path
|
18 |
-
import re
|
19 |
-
from bs4 import BeautifulSoup
|
20 |
-
import mimetypes
|
21 |
-
|
22 |
-
# --- Constants ---
|
23 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
24 |
-
|
25 |
-
# --- Global Cache for Answers ---
|
26 |
-
cached_answers = {}
|
27 |
-
cached_questions = []
|
28 |
-
processing_status = {"is_processing": False, "progress": 0, "total": 0}
|
29 |
-
|
30 |
-
# --- Web Content Fetcher ---
|
31 |
-
class WebContentFetcher:
|
32 |
-
def __init__(self, debug: bool = True):
|
33 |
-
self.debug = debug
|
34 |
-
self.session = requests.Session()
|
35 |
-
self.session.headers.update({
|
36 |
-
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
37 |
-
})
|
38 |
-
|
39 |
-
def extract_urls_from_text(self, text: str) -> List[str]:
|
40 |
-
"""Extract URLs from text using regex."""
|
41 |
-
url_pattern = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
|
42 |
-
urls = re.findall(url_pattern, text)
|
43 |
-
return list(set(urls)) # Remove duplicates
|
44 |
-
|
45 |
-
def fetch_url_content(self, url: str) -> Dict[str, str]:
|
46 |
-
"""
|
47 |
-
Fetch content from a URL and extract text, handling different content types.
|
48 |
-
Returns a dictionary with 'content', 'title', 'content_type', and 'error' keys.
|
49 |
-
"""
|
50 |
-
try:
|
51 |
-
# Clean the URL
|
52 |
-
url = url.strip()
|
53 |
-
if not url.startswith(('http://', 'https://')):
|
54 |
-
url = 'https://' + url
|
55 |
-
|
56 |
-
if self.debug:
|
57 |
-
print(f"Fetching URL: {url}")
|
58 |
-
|
59 |
-
response = self.session.get(url, timeout=30, allow_redirects=True)
|
60 |
-
response.raise_for_status()
|
61 |
-
|
62 |
-
content_type = response.headers.get('content-type', '').lower()
|
63 |
-
|
64 |
-
result = {
|
65 |
-
'url': url,
|
66 |
-
'content_type': content_type,
|
67 |
-
'title': '',
|
68 |
-
'content': '',
|
69 |
-
'error': None
|
70 |
-
}
|
71 |
-
|
72 |
-
# Handle different content types
|
73 |
-
if 'text/html' in content_type:
|
74 |
-
# Parse HTML content
|
75 |
-
soup = BeautifulSoup(response.content, 'html.parser')
|
76 |
-
|
77 |
-
# Extract title
|
78 |
-
title_tag = soup.find('title')
|
79 |
-
result['title'] = title_tag.get_text().strip() if title_tag else 'No title'
|
80 |
-
|
81 |
-
# Remove script and style elements
|
82 |
-
for script in soup(["script", "style"]):
|
83 |
-
script.decompose()
|
84 |
-
|
85 |
-
# Extract text content
|
86 |
-
text_content = soup.get_text()
|
87 |
-
|
88 |
-
# Clean up text
|
89 |
-
lines = (line.strip() for line in text_content.splitlines())
|
90 |
-
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
91 |
-
text_content = ' '.join(chunk for chunk in chunks if chunk)
|
92 |
-
|
93 |
-
# Limit content length
|
94 |
-
if len(text_content) > 8000:
|
95 |
-
text_content = text_content[:8000] + "... (truncated)"
|
96 |
-
|
97 |
-
result['content'] = text_content
|
98 |
-
|
99 |
-
elif 'text/plain' in content_type:
|
100 |
-
# Handle plain text
|
101 |
-
text_content = response.text
|
102 |
-
if len(text_content) > 8000:
|
103 |
-
text_content = text_content[:8000] + "... (truncated)"
|
104 |
-
result['content'] = text_content
|
105 |
-
result['title'] = f"Text document from {url}"
|
106 |
-
|
107 |
-
elif 'application/json' in content_type:
|
108 |
-
# Handle JSON content
|
109 |
-
try:
|
110 |
-
json_data = response.json()
|
111 |
-
result['content'] = json.dumps(json_data, indent=2)[:8000]
|
112 |
-
result['title'] = f"JSON document from {url}"
|
113 |
-
except:
|
114 |
-
result['content'] = response.text[:8000]
|
115 |
-
result['title'] = f"JSON document from {url}"
|
116 |
-
|
117 |
-
elif any(x in content_type for x in ['application/pdf', 'application/msword', 'application/vnd.openxmlformats']):
|
118 |
-
# Handle document files
|
119 |
-
result['content'] = f"Document file detected ({content_type}). Content extraction for this file type is not implemented."
|
120 |
-
result['title'] = f"Document from {url}"
|
121 |
-
|
122 |
-
else:
|
123 |
-
# Handle other content types
|
124 |
-
if response.text:
|
125 |
-
content = response.text[:8000]
|
126 |
-
result['content'] = content
|
127 |
-
result['title'] = f"Content from {url}"
|
128 |
-
else:
|
129 |
-
result['content'] = f"Non-text content detected ({content_type})"
|
130 |
-
result['title'] = f"File from {url}"
|
131 |
-
|
132 |
-
if self.debug:
|
133 |
-
print(f"Successfully fetched content from {url}: {len(result['content'])} characters")
|
134 |
-
|
135 |
-
return result
|
136 |
-
|
137 |
-
except requests.exceptions.RequestException as e:
|
138 |
-
error_msg = f"Failed to fetch {url}: {str(e)}"
|
139 |
-
if self.debug:
|
140 |
-
print(error_msg)
|
141 |
-
return {
|
142 |
-
'url': url,
|
143 |
-
'content_type': 'error',
|
144 |
-
'title': f"Error fetching {url}",
|
145 |
-
'content': '',
|
146 |
-
'error': error_msg
|
147 |
-
}
|
148 |
-
except Exception as e:
|
149 |
-
error_msg = f"Unexpected error fetching {url}: {str(e)}"
|
150 |
-
if self.debug:
|
151 |
-
print(error_msg)
|
152 |
-
return {
|
153 |
-
'url': url,
|
154 |
-
'content_type': 'error',
|
155 |
-
'title': f"Error fetching {url}",
|
156 |
-
'content': '',
|
157 |
-
'error': error_msg
|
158 |
-
}
|
159 |
-
|
160 |
-
def fetch_multiple_urls(self, urls: List[str]) -> List[Dict[str, str]]:
|
161 |
-
"""Fetch content from multiple URLs."""
|
162 |
-
results = []
|
163 |
-
for url in urls[:5]: # Limit to 5 URLs to avoid excessive processing
|
164 |
-
result = self.fetch_url_content(url)
|
165 |
-
results.append(result)
|
166 |
-
time.sleep(1) # Be respectful to servers
|
167 |
-
return results
|
168 |
-
|
169 |
-
# --- File Processing Utility ---
|
170 |
-
def save_attachment_to_file(attachment_data: Union[str, bytes, dict], temp_dir: str, file_name: str = None) -> Optional[str]:
|
171 |
"""
|
172 |
-
|
173 |
-
Returns
|
174 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
try:
|
176 |
-
#
|
177 |
-
|
178 |
-
file_name = f"attachment_{int(time.time())}"
|
179 |
-
|
180 |
-
# Handle different data types
|
181 |
-
if isinstance(attachment_data, dict):
|
182 |
-
# Handle dict with file data
|
183 |
-
if 'data' in attachment_data:
|
184 |
-
file_data = attachment_data['data']
|
185 |
-
file_type = attachment_data.get('type', '').lower()
|
186 |
-
original_name = attachment_data.get('name', file_name)
|
187 |
-
elif 'content' in attachment_data:
|
188 |
-
file_data = attachment_data['content']
|
189 |
-
file_type = attachment_data.get('mime_type', '').lower()
|
190 |
-
original_name = attachment_data.get('filename', file_name)
|
191 |
-
else:
|
192 |
-
# Try to use the dict as file data directly
|
193 |
-
file_data = str(attachment_data)
|
194 |
-
file_type = ''
|
195 |
-
original_name = file_name
|
196 |
-
|
197 |
-
# Use original name if available
|
198 |
-
if original_name and original_name != file_name:
|
199 |
-
file_name = original_name
|
200 |
-
|
201 |
-
elif isinstance(attachment_data, str):
|
202 |
-
# Could be base64 encoded data or plain text
|
203 |
-
file_data = attachment_data
|
204 |
-
file_type = ''
|
205 |
-
|
206 |
-
elif isinstance(attachment_data, bytes):
|
207 |
-
# Binary data
|
208 |
-
file_data = attachment_data
|
209 |
-
file_type = ''
|
210 |
-
|
211 |
-
else:
|
212 |
-
print(f"Unknown attachment data type: {type(attachment_data)}")
|
213 |
-
return None
|
214 |
-
|
215 |
-
# Ensure file has an extension
|
216 |
-
if '.' not in file_name:
|
217 |
-
# Try to determine extension from type
|
218 |
-
if 'image' in file_type:
|
219 |
-
if 'jpeg' in file_type or 'jpg' in file_type:
|
220 |
-
file_name += '.jpg'
|
221 |
-
elif 'png' in file_type:
|
222 |
-
file_name += '.png'
|
223 |
-
else:
|
224 |
-
file_name += '.img'
|
225 |
-
elif 'audio' in file_type:
|
226 |
-
if 'mp3' in file_type:
|
227 |
-
file_name += '.mp3'
|
228 |
-
elif 'wav' in file_type:
|
229 |
-
file_name += '.wav'
|
230 |
-
else:
|
231 |
-
file_name += '.audio'
|
232 |
-
elif 'python' in file_type or 'text' in file_type:
|
233 |
-
file_name += '.py'
|
234 |
-
else:
|
235 |
-
file_name += '.file'
|
236 |
-
|
237 |
-
file_path = os.path.join(temp_dir, file_name)
|
238 |
-
|
239 |
-
# Save the file
|
240 |
-
if isinstance(file_data, str):
|
241 |
-
# Try to decode if it's base64
|
242 |
-
try:
|
243 |
-
# Check if it looks like base64
|
244 |
-
if len(file_data) > 100 and '=' in file_data[-5:]:
|
245 |
-
decoded_data = base64.b64decode(file_data)
|
246 |
-
with open(file_path, 'wb') as f:
|
247 |
-
f.write(decoded_data)
|
248 |
-
else:
|
249 |
-
# Plain text
|
250 |
-
with open(file_path, 'w', encoding='utf-8') as f:
|
251 |
-
f.write(file_data)
|
252 |
-
except:
|
253 |
-
# If base64 decode fails, save as text
|
254 |
-
with open(file_path, 'w', encoding='utf-8') as f:
|
255 |
-
f.write(file_data)
|
256 |
-
else:
|
257 |
-
# Binary data
|
258 |
-
with open(file_path, 'wb') as f:
|
259 |
-
f.write(file_data)
|
260 |
-
|
261 |
-
print(f"Saved attachment: {file_path}")
|
262 |
-
return file_path
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
|
|
|
|
|
267 |
|
268 |
-
#
|
269 |
-
|
270 |
-
def __init__(self, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"):
|
271 |
-
self.client = InferenceClient(model=model_name, provider="sambanova")
|
272 |
-
|
273 |
-
def analyze_code(self, code_path: str) -> str:
|
274 |
-
"""
|
275 |
-
Analyze Python code and return insights.
|
276 |
-
"""
|
277 |
-
try:
|
278 |
-
with open(code_path, 'r', encoding='utf-8') as f:
|
279 |
-
code_content = f.read()
|
280 |
-
|
281 |
-
# Limit code length for analysis
|
282 |
-
if len(code_content) > 5000:
|
283 |
-
code_content = code_content[:5000] + "\n... (truncated)"
|
284 |
-
|
285 |
-
analysis_prompt = f"""Analyze this Python code and provide a concise summary of:
|
286 |
-
1. What the code does (main functionality)
|
287 |
-
2. Key functions/classes
|
288 |
-
3. Any notable patterns or issues
|
289 |
-
4. Input/output behavior if applicable
|
290 |
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
|
296 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
|
298 |
-
|
299 |
-
|
300 |
-
messages=messages,
|
301 |
-
max_tokens=500,
|
302 |
-
temperature=0.3
|
303 |
-
)
|
304 |
-
|
305 |
-
return response.choices[0].message.content.strip()
|
306 |
-
|
307 |
-
except Exception as e:
|
308 |
-
return f"Code analysis failed: {e}"
|
309 |
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
self.client = InferenceClient(model=model_name)
|
314 |
-
|
315 |
-
def analyze_image(self, image_path: str, prompt: str = "Describe this image in detail") -> str:
|
316 |
-
"""
|
317 |
-
Analyze an image and return a description.
|
318 |
-
"""
|
319 |
-
try:
|
320 |
-
# Open and process the image
|
321 |
-
with open(image_path, "rb") as f:
|
322 |
-
image_bytes = f.read()
|
323 |
-
|
324 |
-
# Use the vision model to analyze the image
|
325 |
-
response = self.client.image_to_text(
|
326 |
-
image=image_bytes,
|
327 |
-
model="microsoft/Florence-2-large"
|
328 |
-
)
|
329 |
-
|
330 |
-
return response.get("generated_text", "Could not analyze image")
|
331 |
-
|
332 |
-
except Exception as e:
|
333 |
-
try:
|
334 |
-
# Fallback: use a different vision model
|
335 |
-
response = self.client.image_to_text(
|
336 |
-
image=image_bytes,
|
337 |
-
model="Salesforce/blip-image-captioning-large"
|
338 |
-
)
|
339 |
-
return response.get("generated_text", f"Image analysis error: {e}")
|
340 |
-
except:
|
341 |
-
return f"Image analysis failed: {e}"
|
342 |
|
343 |
-
|
344 |
-
""
|
345 |
-
Extract text from an image using OCR.
|
346 |
-
"""
|
347 |
-
try:
|
348 |
-
with open(image_path, "rb") as f:
|
349 |
-
image_bytes = f.read()
|
350 |
-
|
351 |
-
# Use an OCR model
|
352 |
-
response = self.client.image_to_text(
|
353 |
-
image=image_bytes,
|
354 |
-
model="microsoft/trocr-base-printed"
|
355 |
-
)
|
356 |
|
357 |
-
|
358 |
-
|
359 |
-
except Exception as e:
|
360 |
-
return f"OCR failed: {e}"
|
361 |
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
""
|
369 |
-
|
370 |
-
"""
|
371 |
-
try:
|
372 |
-
with open(audio_path, "rb") as f:
|
373 |
-
audio_bytes = f.read()
|
374 |
-
|
375 |
-
# Use Whisper for transcription
|
376 |
-
response = self.client.automatic_speech_recognition(
|
377 |
-
audio=audio_bytes
|
378 |
-
)
|
379 |
-
|
380 |
-
return response.get("text", "Could not transcribe audio")
|
381 |
-
|
382 |
-
except Exception as e:
|
383 |
-
try:
|
384 |
-
# Fallback to a different ASR model
|
385 |
-
response = self.client.automatic_speech_recognition(
|
386 |
-
audio=audio_bytes,
|
387 |
-
model="facebook/wav2vec2-large-960h-lv60-self"
|
388 |
-
)
|
389 |
-
return response.get("text", f"Audio transcription error: {e}")
|
390 |
-
except:
|
391 |
-
return f"Audio transcription failed: {e}"
|
392 |
|
393 |
-
|
394 |
-
|
395 |
-
def __init__(self, debug: bool = True, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"):
|
396 |
-
self.search = DuckDuckGoSearchTool()
|
397 |
-
self.client = InferenceClient(model=model_name, provider="sambanova")
|
398 |
-
self.image_tool = ImageAnalysisTool()
|
399 |
-
self.audio_tool = AudioTranscriptionTool()
|
400 |
-
self.code_tool = CodeAnalysisTool(model_name)
|
401 |
-
self.web_fetcher = WebContentFetcher(debug)
|
402 |
-
self.debug = debug
|
403 |
if self.debug:
|
404 |
-
print(f"
|
405 |
-
|
406 |
-
def _chat_completion(self, prompt: str, max_tokens: int = 500, temperature: float = 0.3) -> str:
|
407 |
-
"""
|
408 |
-
Use chat completion instead of text generation to avoid provider compatibility issues.
|
409 |
-
"""
|
410 |
-
try:
|
411 |
-
messages = [{"role": "user", "content": prompt}]
|
412 |
-
|
413 |
-
# Try chat completion first
|
414 |
-
try:
|
415 |
-
response = self.client.chat_completion(
|
416 |
-
messages=messages,
|
417 |
-
max_tokens=max_tokens,
|
418 |
-
temperature=temperature
|
419 |
-
)
|
420 |
-
return response.choices[0].message.content.strip()
|
421 |
-
except Exception as chat_error:
|
422 |
-
if self.debug:
|
423 |
-
print(f"Chat completion failed: {chat_error}, trying text generation...")
|
424 |
-
|
425 |
-
# Fallback to text generation
|
426 |
-
response = self.client.conversational(
|
427 |
-
prompt,
|
428 |
-
max_new_tokens=max_tokens,
|
429 |
-
temperature=temperature,
|
430 |
-
do_sample=temperature > 0
|
431 |
-
)
|
432 |
-
return response.strip()
|
433 |
-
|
434 |
-
except Exception as e:
|
435 |
-
if self.debug:
|
436 |
-
print(f"Both chat completion and text generation failed: {e}")
|
437 |
-
raise e
|
438 |
-
|
439 |
-
def _extract_and_process_urls(self, question_text: str) -> str:
|
440 |
-
"""
|
441 |
-
Extract URLs from question text and fetch their content.
|
442 |
-
Returns formatted content from all URLs.
|
443 |
-
"""
|
444 |
-
urls = self.web_fetcher.extract_urls_from_text(question_text)
|
445 |
|
446 |
-
|
447 |
-
return ""
|
448 |
|
|
|
|
|
|
|
449 |
if self.debug:
|
450 |
-
print(f"
|
451 |
-
|
452 |
-
url_contents = self.web_fetcher.fetch_multiple_urls(urls)
|
453 |
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
formatted_content = []
|
459 |
-
for content_data in url_contents:
|
460 |
-
if content_data['error']:
|
461 |
-
formatted_content.append(f"URL: {content_data['url']}\nError: {content_data['error']}")
|
462 |
-
else:
|
463 |
-
formatted_content.append(
|
464 |
-
f"URL: {content_data['url']}\n"
|
465 |
-
f"Title: {content_data['title']}\n"
|
466 |
-
f"Content Type: {content_data['content_type']}\n"
|
467 |
-
f"Content: {content_data['content']}"
|
468 |
-
)
|
469 |
-
|
470 |
-
return "\n\n" + "="*50 + "\n".join(formatted_content) + "\n" + "="*50
|
471 |
-
|
472 |
-
def _detect_and_process_direct_attachments(self, file_name: str) -> Tuple[List[str], List[str], List[str]]:
|
473 |
-
"""
|
474 |
-
Detect and process a single attachment directly attached to a question (not as a URL).
|
475 |
-
Returns (image_files, audio_files, code_files)
|
476 |
-
"""
|
477 |
-
image_files = []
|
478 |
-
audio_files = []
|
479 |
-
code_files = []
|
480 |
-
|
481 |
-
try:
|
482 |
-
# Here, file_type should ideally come from metadata or inferred from content —
|
483 |
-
# since only attachment_name is passed, we'll rely on the file extension.
|
484 |
-
# Get file extension
|
485 |
-
file_ext = Path(file_name).suffix.lower()
|
486 |
-
|
487 |
-
# Determine category
|
488 |
-
is_image = (
|
489 |
-
file_ext in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp', '.tiff']
|
490 |
-
)
|
491 |
-
is_audio = (
|
492 |
-
file_ext in ['.mp3', '.wav', '.m4a', '.ogg', '.flac', '.aac']
|
493 |
-
)
|
494 |
-
is_code = (
|
495 |
-
file_ext in ['.py', '.txt', '.js', '.html', '.css', '.json', '.xml']
|
496 |
-
)
|
497 |
-
|
498 |
-
# Categorize the file
|
499 |
-
if is_image:
|
500 |
-
image_files.append(file_path)
|
501 |
-
elif is_audio:
|
502 |
-
audio_files.append(file_path)
|
503 |
-
elif is_code:
|
504 |
-
code_files.append(file_path)
|
505 |
-
else:
|
506 |
-
# Default to code/text for unknown types
|
507 |
-
code_files.append(file_path)
|
508 |
-
|
509 |
-
except Exception as e:
|
510 |
-
if getattr(self, 'debug', False):
|
511 |
-
print(f"Error processing attachment {file_name}: {e}")
|
512 |
-
|
513 |
-
if getattr(self, 'debug', False):
|
514 |
-
print(f"...Processed attachment: {len(image_files)} images, {len(audio_files)} audio, {len(code_files)} code files")
|
515 |
-
|
516 |
-
return image_files, audio_files, code_files
|
517 |
-
|
518 |
-
def _process_attachments(self, image_files: List[str] = None, audio_files: List[str] = None, code_files: List[str] = None) -> str:
|
519 |
-
"""
|
520 |
-
Process all types of attachments and return their content as text.
|
521 |
-
"""
|
522 |
-
attachment_content = []
|
523 |
-
|
524 |
-
# Process code files
|
525 |
-
if code_files:
|
526 |
-
for code_file in code_files:
|
527 |
-
if code_file and os.path.exists(code_file):
|
528 |
-
try:
|
529 |
-
# First, include the raw code content (truncated)
|
530 |
-
with open(code_file, 'r', encoding='utf-8') as f:
|
531 |
-
code_content = f.read()
|
532 |
-
|
533 |
-
if len(code_content) > 1000:
|
534 |
-
code_preview = code_content[:1000] + "\n... (truncated)"
|
535 |
-
else:
|
536 |
-
code_preview = code_content
|
537 |
-
|
538 |
-
attachment_content.append(f"Code File Content:\n```python\n{code_preview}\n```")
|
539 |
-
|
540 |
-
# Then add analysis
|
541 |
-
code_analysis = self.code_tool.analyze_code(code_file)
|
542 |
-
attachment_content.append(f"Code Analysis: {code_analysis}")
|
543 |
-
|
544 |
-
except Exception as e:
|
545 |
-
attachment_content.append(f"Error processing code file {code_file}: {e}")
|
546 |
-
|
547 |
-
# Process images
|
548 |
-
if image_files:
|
549 |
-
for image_file in image_files:
|
550 |
-
if image_file and os.path.exists(image_file):
|
551 |
-
try:
|
552 |
-
# Analyze the image
|
553 |
-
image_description = self.image_tool.analyze_image(image_file)
|
554 |
-
attachment_content.append(f"Image Analysis: {image_description}")
|
555 |
-
|
556 |
-
# Try to extract text from image
|
557 |
-
extracted_text = self.image_tool.extract_text_from_image(image_file)
|
558 |
-
if extracted_text and "No text found" not in extracted_text:
|
559 |
-
attachment_content.append(f"Text from Image: {extracted_text}")
|
560 |
-
|
561 |
-
except Exception as e:
|
562 |
-
attachment_content.append(f"Error processing image {image_file}: {e}")
|
563 |
-
|
564 |
-
# Process audio files
|
565 |
-
if audio_files:
|
566 |
-
for audio_file in audio_files:
|
567 |
-
if audio_file and os.path.exists(audio_file):
|
568 |
-
try:
|
569 |
-
# Transcribe the audio
|
570 |
-
transcription = self.audio_tool.transcribe_audio(audio_file)
|
571 |
-
attachment_content.append(f"Audio Transcription: {transcription}")
|
572 |
-
|
573 |
-
except Exception as e:
|
574 |
-
attachment_content.append(f"Error processing audio {audio_file}: {e}")
|
575 |
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
"""
|
580 |
-
Use LLM to determine if search is needed for the question, considering attachment and URL context.
|
581 |
-
Returns True if search is recommended, False otherwise.
|
582 |
-
"""
|
583 |
-
decision_prompt = f"""Analyze this question and decide if it requires real-time information, recent data, or specific facts that might not be in your training data.
|
584 |
-
|
585 |
-
SEARCH IS NEEDED for:
|
586 |
-
- Current events, news, recent developments
|
587 |
-
- Real-time data (weather, stock prices, sports scores)
|
588 |
-
- Specific factual information that changes frequently
|
589 |
-
- Recent product releases, company information
|
590 |
-
- Current status of people, organizations, or projects
|
591 |
-
- Location-specific current information
|
592 |
-
|
593 |
-
SEARCH IS NOT NEEDED for:
|
594 |
-
- General knowledge questions
|
595 |
-
- Mathematical calculations
|
596 |
-
- Programming concepts and syntax
|
597 |
-
- Historical facts (older than 1 year)
|
598 |
-
- Definitions of well-established concepts
|
599 |
-
- How-to instructions for common tasks
|
600 |
-
- Creative writing or opinion-based responses
|
601 |
-
- Questions that can be answered from attached files (code, images, audio)
|
602 |
-
- Questions that can be answered from URL content provided
|
603 |
-
- Code analysis, debugging, or explanation questions
|
604 |
-
- Questions about uploaded or linked content
|
605 |
-
|
606 |
-
Question: "{question}"
|
607 |
-
|
608 |
-
{f"Attachment Context Available: {attachment_context[:1000]}..." if attachment_context else "No attachment context available."}
|
609 |
-
|
610 |
-
{f"URL Content Available: {url_context[:1000]}..." if url_context else "No URL content available."}
|
611 |
-
|
612 |
-
If you cannot provide an answer, reply with "NO_SEARCH". Respond with only "SEARCH" or "NO_SEARCH" followed by a brief reason (max 20 words).
|
613 |
-
|
614 |
-
Example responses:
|
615 |
-
- "SEARCH - Current weather data needed"
|
616 |
-
- "NO_SEARCH - Mathematical concept, general knowledge sufficient"
|
617 |
-
- "NO_SEARCH - Can be answered from attached code/image/URL content"
|
618 |
-
"""
|
619 |
-
|
620 |
-
try:
|
621 |
-
response = self._chat_completion(decision_prompt, max_tokens=50, temperature=0.1)
|
622 |
-
|
623 |
-
decision = response.strip().upper()
|
624 |
-
should_search = decision.startswith("SEARCH")
|
625 |
-
time.sleep(5)
|
626 |
-
|
627 |
-
if self.debug:
|
628 |
-
print(f"4. Decision regarding the search: {decision}")
|
629 |
-
|
630 |
-
return should_search
|
631 |
|
632 |
-
|
633 |
-
if self.debug:
|
634 |
-
print(f"Error in search decision: {e}, defaulting to no search for questions with context")
|
635 |
-
# Default to no search if decision fails and there is context available
|
636 |
-
return len(attachment_context) == 0 and len(url_context) == 0
|
637 |
-
|
638 |
-
def _answer_with_llm(self, question: str, attachment_context: str = "", url_context: str = "") -> str:
|
639 |
-
"""
|
640 |
-
Generate answer using LLM without search, considering attachment and URL context.
|
641 |
-
"""
|
642 |
-
context_sections = []
|
643 |
|
644 |
-
|
645 |
-
|
646 |
|
647 |
-
if
|
648 |
-
|
649 |
-
|
650 |
-
context_section = "\n\n".join(context_sections) if context_sections else ""
|
651 |
-
|
652 |
-
answer_prompt = f"""\no_think You are a general AI assistant. I will ask you a question.
|
653 |
-
YOUR ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
654 |
-
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
|
655 |
-
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
|
656 |
-
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
657 |
-
Do not add a dot after the numbers.
|
658 |
-
Do not report on your thoughts. Do not provide explanations.
|
659 |
-
{context_section}
|
660 |
-
|
661 |
-
Question: {question}
|
662 |
-
|
663 |
-
Answer:"""
|
664 |
-
|
665 |
-
try:
|
666 |
-
response = self._chat_completion(answer_prompt, max_tokens=500, temperature=0.3)
|
667 |
-
return response
|
668 |
-
|
669 |
-
except Exception as e:
|
670 |
-
return f"Sorry, I encountered an error generating the response: {e}"
|
671 |
-
|
672 |
-
def _answer_with_search(self, question: str, attachment_context: str = "", url_context: str = "") -> str:
|
673 |
-
"""
|
674 |
-
Generate answer using search results and LLM, considering attachment and URL context.
|
675 |
-
"""
|
676 |
-
try:
|
677 |
-
# Perform search
|
678 |
-
time.sleep(10)
|
679 |
-
search_results = self.search(question)
|
680 |
-
|
681 |
-
if not search_results:
|
682 |
-
return "No search results found. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question, attachment_context, url_context)
|
683 |
-
|
684 |
-
# Format search results - handle different result formats
|
685 |
-
if isinstance(search_results, str):
|
686 |
-
search_context = search_results
|
687 |
-
else:
|
688 |
-
# Handle list of results
|
689 |
-
formatted_results = []
|
690 |
-
for i, result in enumerate(search_results[:3]): # Use top 3 results
|
691 |
-
if isinstance(result, dict):
|
692 |
-
title = result.get("title", "No title")
|
693 |
-
snippet = result.get("snippet", "").strip()
|
694 |
-
link = result.get("link", "")
|
695 |
-
formatted_results.append(f"Title: {title}\nContent: {snippet}\nSource: {link}")
|
696 |
-
elif isinstance(result, str):
|
697 |
-
formatted_results.append(result)
|
698 |
-
else:
|
699 |
-
formatted_results.append(str(result))
|
700 |
-
|
701 |
-
search_context = "\n\n".join(formatted_results)
|
702 |
-
|
703 |
-
|
704 |
-
# Generate answer using search context, attachment context, and URL context
|
705 |
-
context_sections = [f"Search Results:\n{search_context}"]
|
706 |
-
|
707 |
-
if attachment_context:
|
708 |
-
context_sections.append(f"Attachment Context:\n{attachment_context}")
|
709 |
-
|
710 |
-
if url_context:
|
711 |
-
context_sections.append(f"URL Content:\n{url_context}")
|
712 |
-
|
713 |
-
full_context = "\n\n".join(context_sections)
|
714 |
|
|
|
|
|
715 |
if self.debug:
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
answer_prompt = f"""\no_think You are a general AI assistant. I will ask you a question.
|
720 |
-
Based on the search results and the context sections below, provide an answer to the question.
|
721 |
-
If the search results don't fully answer the question, you can supplement with information from other context sections or your general knowledge.
|
722 |
-
Your ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
723 |
-
Do not add dot if your answer is a number.
|
724 |
-
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
|
725 |
-
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
|
726 |
-
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
727 |
-
Do not report on your thoughts. Do not provide explanations.
|
728 |
-
|
729 |
-
Question: {question}
|
730 |
-
|
731 |
-
{full_context}
|
732 |
-
|
733 |
-
Answer:"""
|
734 |
-
|
735 |
-
try:
|
736 |
-
response = self._chat_completion(answer_prompt, max_tokens=600, temperature=0.3)
|
737 |
-
return response
|
738 |
-
|
739 |
-
except Exception as e:
|
740 |
-
if self.debug:
|
741 |
-
print(f"LLM generation error: {e}")
|
742 |
-
# Fallback to simple search result formatting
|
743 |
-
if search_results:
|
744 |
-
if isinstance(search_results, str):
|
745 |
-
return search_results
|
746 |
-
elif isinstance(search_results, list) and len(search_results) > 0:
|
747 |
-
first_result = search_results[0]
|
748 |
-
if isinstance(first_result, dict):
|
749 |
-
title = first_result.get("title", "Search Result")
|
750 |
-
snippet = first_result.get("snippet", "").strip()
|
751 |
-
link = first_result.get("link", "")
|
752 |
-
return f"**{title}**\n\n{snippet}\n\n{f'Source: {link}' if link else ''}"
|
753 |
-
else:
|
754 |
-
return str(first_result)
|
755 |
-
else:
|
756 |
-
return str(search_results)
|
757 |
-
else:
|
758 |
-
return "Search completed but no usable results found."
|
759 |
-
|
760 |
-
except Exception as e:
|
761 |
-
return f"Search failed: {e}. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question, attachment_context, url_context)
|
762 |
-
|
763 |
-
def process_question_with_attachments(self, question_data: dict) -> str:
|
764 |
-
"""
|
765 |
-
Process a question that may have attachments and URLs.
|
766 |
-
"""
|
767 |
-
question_text = question_data.get('question', '')
|
768 |
-
print(question_data)
|
769 |
-
if self.debug:
|
770 |
-
print(f"\n1. Processing question with potential attachments and URLs: {question_text[:300]}...")
|
771 |
-
|
772 |
-
try:
|
773 |
-
# Detect and process URLs
|
774 |
-
print(f"2. Detecting and processing URLs...")
|
775 |
-
|
776 |
-
url_context = self._extract_and_process_urls(question_text)
|
777 |
-
|
778 |
if self.debug:
|
779 |
-
print(
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
try:
|
784 |
-
# Detect and download attachments
|
785 |
-
print(f"3. Searching for images, audio or code attachments...")
|
786 |
-
attachment_name = question_data.get('file_name', '')
|
787 |
-
image_files, audio_files, code_files = self._detect_and_process_direct_attachments(attachment_name)
|
788 |
-
|
789 |
-
# Process attachments to get context
|
790 |
-
attachment_context = self._process_attachments(image_files, audio_files, code_files)
|
791 |
-
|
792 |
-
if self.debug and attachment_context:
|
793 |
-
print(f"Attachment context: {attachment_context[:200]}...")
|
794 |
-
|
795 |
-
# Decide whether to search
|
796 |
-
if self._should_search(question_text, attachment_context):
|
797 |
-
if self.debug:
|
798 |
-
print("5. Using search-based approach")
|
799 |
-
answer = self._answer_with_search(question_text, attachment_context)
|
800 |
-
else:
|
801 |
-
if self.debug:
|
802 |
-
print("5. Using LLM-only approach")
|
803 |
-
answer = self._answer_with_llm(question_text, attachment_context)
|
804 |
-
print("here")
|
805 |
-
print(answer)
|
806 |
-
# Cleanup temporary files
|
807 |
-
if image_files or audio_files or code_files:
|
808 |
-
try:
|
809 |
-
all_files = image_files + audio_files + code_files
|
810 |
-
temp_dirs = set(os.path.dirname(f) for f in all_files)
|
811 |
-
for temp_dir in temp_dirs:
|
812 |
-
import shutil
|
813 |
-
shutil.rmtree(temp_dir, ignore_errors=True)
|
814 |
-
except Exception as cleanup_error:
|
815 |
-
if self.debug:
|
816 |
-
print(f"Cleanup error: {cleanup_error}")
|
817 |
|
818 |
-
|
819 |
-
|
820 |
|
|
|
821 |
if self.debug:
|
822 |
-
print(f"
|
823 |
-
|
824 |
|
|
|
|
|
|
|
825 |
def fetch_questions() -> Tuple[str, Optional[pd.DataFrame]]:
|
826 |
"""
|
827 |
Fetch questions from the API and cache them.
|
|
|
1 |
+
def _detect_and_process_direct_attachments(self, file_name: str) -> Tuple[List[str], List[str], List[str]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
"""
|
3 |
+
Detect and process a single attachment directly attached to a question (not as a URL).
|
4 |
+
Returns (image_files, audio_files, code_files)
|
5 |
"""
|
6 |
+
image_files = []
|
7 |
+
audio_files = []
|
8 |
+
code_files = []
|
9 |
+
|
10 |
+
if not file_name:
|
11 |
+
return image_files, audio_files, code_files
|
12 |
+
|
13 |
try:
|
14 |
+
# Construct the file path (assuming file is in current directory)
|
15 |
+
file_path = os.path.join(os.getcwd(), file_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# Check if file exists
|
18 |
+
if not os.path.exists(file_path):
|
19 |
+
if self.debug:
|
20 |
+
print(f"File not found: {file_path}")
|
21 |
+
return image_files, audio_files, code_files
|
22 |
|
23 |
+
# Get file extension
|
24 |
+
file_ext = Path(file_name).suffix.lower()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# Determine category
|
27 |
+
is_image = (
|
28 |
+
file_ext in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp', '.tiff']
|
29 |
+
)
|
30 |
+
is_audio = (
|
31 |
+
file_ext in ['.mp3', '.wav', '.m4a', '.ogg', '.flac', '.aac']
|
32 |
+
)
|
33 |
+
is_code = (
|
34 |
+
file_ext in ['.py', '.txt', '.js', '.html', '.css', '.json', '.xml', '.md', '.c', '.cpp', '.java']
|
35 |
+
)
|
36 |
|
37 |
+
# Categorize the file
|
38 |
+
if is_image:
|
39 |
+
image_files.append(file_path)
|
40 |
+
elif is_audio:
|
41 |
+
audio_files.append(file_path)
|
42 |
+
elif is_code:
|
43 |
+
code_files.append(file_path)
|
44 |
+
else:
|
45 |
+
# Default to code/text for unknown types
|
46 |
+
code_files.append(file_path)
|
47 |
|
48 |
+
if self.debug:
|
49 |
+
print(f"Processed file: {file_name} -> {'image' if is_image else 'audio' if is_audio else 'code'}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
except Exception as e:
|
52 |
+
if self.debug:
|
53 |
+
print(f"Error processing attachment {file_name}: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
if self.debug:
|
56 |
+
print(f"Processed attachment: {len(image_files)} images, {len(audio_files)} audio, {len(code_files)} code files")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
return image_files, audio_files, code_files
|
|
|
|
|
|
|
59 |
|
60 |
+
def process_question_with_attachments(self, question_data: dict) -> str:
|
61 |
+
"""
|
62 |
+
Process a question that may have attachments and URLs.
|
63 |
+
"""
|
64 |
+
question_text = question_data.get('question', '')
|
65 |
+
if self.debug:
|
66 |
+
print(f"Question data keys: {list(question_data.keys())}")
|
67 |
+
print(f"\n1. Processing question with potential attachments and URLs: {question_text[:300]}...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
try:
|
70 |
+
# Detect and process URLs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
if self.debug:
|
72 |
+
print(f"2. Detecting and processing URLs...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
url_context = self._extract_and_process_urls(question_text)
|
|
|
75 |
|
76 |
+
if self.debug and url_context:
|
77 |
+
print(f"URL context found: {len(url_context)} characters")
|
78 |
+
except Exception as e:
|
79 |
if self.debug:
|
80 |
+
print(f"Error extracting URLs: {e}")
|
81 |
+
url_context = ""
|
|
|
82 |
|
83 |
+
try:
|
84 |
+
# Detect and download attachments
|
85 |
+
if self.debug:
|
86 |
+
print(f"3. Searching for images, audio or code attachments...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
attachment_name = question_data.get('file_name', '')
|
89 |
+
if self.debug:
|
90 |
+
print(f"Attachment name from question_data: '{attachment_name}'")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
image_files, audio_files, code_files = self._detect_and_process_direct_attachments(attachment_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
# Process attachments to get context
|
95 |
+
attachment_context = self._process_attachments(image_files, audio_files, code_files)
|
96 |
|
97 |
+
if self.debug and attachment_context:
|
98 |
+
print(f"Attachment context: {attachment_context[:200]}...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
+
# Decide whether to search
|
101 |
+
if self._should_search(question_text, attachment_context, url_context):
|
102 |
if self.debug:
|
103 |
+
print("5. Using search-based approach")
|
104 |
+
answer = self._answer_with_search(question_text, attachment_context, url_context)
|
105 |
+
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
if self.debug:
|
107 |
+
print("5. Using LLM-only approach")
|
108 |
+
answer = self._answer_with_llm(question_text, attachment_context, url_context)
|
109 |
+
if self.debug:
|
110 |
+
print(f"LLM answer: {answer}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
+
# Note: We don't cleanup files here since they're not temporary files we created
|
113 |
+
# They are actual files in the working directory
|
114 |
|
115 |
+
except Exception as e:
|
116 |
if self.debug:
|
117 |
+
print(f"Error in attachment processing: {e}")
|
118 |
+
answer = f"Sorry, I encountered an error: {e}"
|
119 |
|
120 |
+
if self.debug:
|
121 |
+
print(f"6. Agent returning answer: {answer[:100]}...")
|
122 |
+
return answer
|
123 |
def fetch_questions() -> Tuple[str, Optional[pd.DataFrame]]:
|
124 |
"""
|
125 |
Fetch questions from the API and cache them.
|