Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -185,9 +185,9 @@ class IntelligentAgent:
|
|
185 |
|
186 |
return "\n\n".join(media_content) if media_content else ""
|
187 |
|
188 |
-
def _should_search(self, question: str, media_context: str) -> bool:
|
189 |
"""
|
190 |
-
Use LLM to determine if search is needed for the question.
|
191 |
Returns True if search is recommended, False otherwise.
|
192 |
"""
|
193 |
decision_prompt = f"""Analyze this question and decide if it requires real-time information, recent data, or specific facts that might not be in your training data.
|
@@ -208,14 +208,18 @@ SEARCH IS NOT NEEDED for:
|
|
208 |
- Definitions of well-established concepts
|
209 |
- How-to instructions for common tasks
|
210 |
- Creative writing or opinion-based responses
|
|
|
211 |
|
212 |
Question: "{question}"
|
213 |
|
|
|
|
|
214 |
Respond with only "SEARCH" or "NO_SEARCH" followed by a brief reason (max 20 words).
|
215 |
|
216 |
Example responses:
|
217 |
- "SEARCH - Current weather data needed"
|
218 |
- "NO_SEARCH - Mathematical concept, general knowledge sufficient"
|
|
|
219 |
"""
|
220 |
|
221 |
try:
|
@@ -236,12 +240,16 @@ Example responses:
|
|
236 |
# Default to search if decision fails
|
237 |
return True
|
238 |
|
239 |
-
def _answer_with_llm(self, question: str) -> str:
|
240 |
"""
|
241 |
-
Generate answer using LLM without search.
|
242 |
"""
|
|
|
|
|
243 |
answer_prompt = f"""You are a general AI assistant. I will ask you a question. YOUR ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
244 |
|
|
|
|
|
245 |
Question: {question}
|
246 |
|
247 |
Answer:"""
|
@@ -253,9 +261,9 @@ Answer:"""
|
|
253 |
except Exception as e:
|
254 |
return f"Sorry, I encountered an error generating the response: {e}"
|
255 |
|
256 |
-
def _answer_with_search(self, question: str) -> str:
|
257 |
"""
|
258 |
-
Generate answer using search results and LLM.
|
259 |
"""
|
260 |
try:
|
261 |
# Perform search
|
@@ -264,17 +272,11 @@ Answer:"""
|
|
264 |
|
265 |
if self.debug:
|
266 |
print(f"Search results type: {type(search_results)}")
|
267 |
-
#print(f"Search results: {search_results}")
|
268 |
|
269 |
if not search_results:
|
270 |
-
return "No search results found. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question)
|
271 |
|
272 |
# Format search results - handle different result formats
|
273 |
-
if self.debug:
|
274 |
-
print(f"First result type: {type(search_results[0]) if search_results else 'None'}")
|
275 |
-
print(f"First result: {search_results[0] if search_results else 'None'}")
|
276 |
-
|
277 |
-
# If search_results is a string, use it directly
|
278 |
if isinstance(search_results, str):
|
279 |
search_context = search_results
|
280 |
else:
|
@@ -287,22 +289,25 @@ Answer:"""
|
|
287 |
link = result.get("link", "")
|
288 |
formatted_results.append(f"Title: {title}\nContent: {snippet}\nSource: {link}")
|
289 |
elif isinstance(result, str):
|
290 |
-
# If result is a string, use it directly
|
291 |
formatted_results.append(result)
|
292 |
else:
|
293 |
-
# Handle other formats
|
294 |
formatted_results.append(str(result))
|
295 |
|
296 |
search_context = "\n\n".join(formatted_results)
|
297 |
|
298 |
-
# Generate answer using search context
|
|
|
|
|
299 |
answer_prompt = f"""You are a general AI assistant. I will ask you a question. Based on the search results below, provide an answer to the question. If the search results don't fully answer the question, you can supplement with your general knowledge.
|
300 |
Your ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
|
|
301 |
Question: {question}
|
302 |
|
303 |
Search Results:
|
304 |
{search_context}
|
305 |
|
|
|
|
|
306 |
Answer:"""
|
307 |
|
308 |
try:
|
@@ -331,29 +336,37 @@ Answer:"""
|
|
331 |
return "Search completed but no usable results found."
|
332 |
|
333 |
except Exception as e:
|
334 |
-
return f"Search failed: {e}. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question)
|
335 |
|
336 |
-
def __call__(self, question: str) -> str:
|
337 |
"""
|
338 |
-
Main entry point - decide whether to search and generate appropriate response.
|
339 |
"""
|
340 |
if self.debug:
|
341 |
print(f"Agent received question: {question}")
|
|
|
|
|
342 |
|
343 |
# Early validation
|
344 |
if not question or not question.strip():
|
345 |
return "Please provide a valid question."
|
346 |
|
347 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
348 |
# Decide whether to search
|
349 |
-
if self._should_search(question):
|
350 |
if self.debug:
|
351 |
print("Using search-based approach")
|
352 |
-
answer = self._answer_with_search(question)
|
353 |
else:
|
354 |
if self.debug:
|
355 |
print("Using LLM-only approach")
|
356 |
-
answer = self._answer_with_llm(question)
|
357 |
|
358 |
except Exception as e:
|
359 |
answer = f"Sorry, I encountered an error: {e}"
|
@@ -474,210 +487,4 @@ def start_answer_generation(model_choice: str):
|
|
474 |
|
475 |
return f"Answer generation started using {model_choice}. Check progress."
|
476 |
|
477 |
-
def
|
478 |
-
"""
|
479 |
-
Get the current progress of answer generation.
|
480 |
-
"""
|
481 |
-
if not processing_status["is_processing"] and processing_status["progress"] == 0:
|
482 |
-
return "Not started"
|
483 |
-
|
484 |
-
if processing_status["is_processing"]:
|
485 |
-
progress = processing_status["progress"]
|
486 |
-
total = processing_status["total"]
|
487 |
-
status_msg = f"Generating answers... {progress}/{total} completed"
|
488 |
-
return status_msg
|
489 |
-
else:
|
490 |
-
# Generation completed
|
491 |
-
if cached_answers:
|
492 |
-
# Create DataFrame with results
|
493 |
-
display_data = []
|
494 |
-
for task_id, data in cached_answers.items():
|
495 |
-
display_data.append({
|
496 |
-
"Task ID": task_id,
|
497 |
-
"Question": data["question"][:100] + "..." if len(data["question"]) > 100 else data["question"],
|
498 |
-
"Generated Answer": data["answer"][:200] + "..." if len(data["answer"]) > 200 else data["answer"]
|
499 |
-
})
|
500 |
-
|
501 |
-
df = pd.DataFrame(display_data)
|
502 |
-
status_msg = f"Answer generation completed! {len(cached_answers)} answers ready for submission."
|
503 |
-
return status_msg, df
|
504 |
-
else:
|
505 |
-
return "Answer generation completed but no answers were generated."
|
506 |
-
|
507 |
-
def submit_cached_answers(profile: gr.OAuthProfile | None):
|
508 |
-
"""
|
509 |
-
Submit the cached answers to the evaluation API.
|
510 |
-
"""
|
511 |
-
global cached_answers
|
512 |
-
|
513 |
-
if not profile:
|
514 |
-
return "Please log in to Hugging Face first.", None
|
515 |
-
|
516 |
-
if not cached_answers:
|
517 |
-
return "No cached answers available. Please generate answers first.", None
|
518 |
-
|
519 |
-
username = profile.username
|
520 |
-
space_id = os.getenv("SPACE_ID")
|
521 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Unknown"
|
522 |
-
|
523 |
-
# Prepare submission payload
|
524 |
-
answers_payload = []
|
525 |
-
for task_id, data in cached_answers.items():
|
526 |
-
answers_payload.append({
|
527 |
-
"task_id": task_id,
|
528 |
-
"submitted_answer": data["answer"]
|
529 |
-
})
|
530 |
-
|
531 |
-
submission_data = {
|
532 |
-
"username": username.strip(),
|
533 |
-
"agent_code": agent_code,
|
534 |
-
"answers": answers_payload
|
535 |
-
}
|
536 |
-
|
537 |
-
# Submit to API
|
538 |
-
api_url = DEFAULT_API_URL
|
539 |
-
submit_url = f"{api_url}/submit"
|
540 |
-
|
541 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
542 |
-
|
543 |
-
try:
|
544 |
-
response = requests.post(submit_url, json=submission_data, timeout=60)
|
545 |
-
response.raise_for_status()
|
546 |
-
result_data = response.json()
|
547 |
-
|
548 |
-
final_status = (
|
549 |
-
f"Submission Successful!\n"
|
550 |
-
f"User: {result_data.get('username')}\n"
|
551 |
-
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
552 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
553 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
554 |
-
)
|
555 |
-
|
556 |
-
# Create results DataFrame
|
557 |
-
results_log = []
|
558 |
-
for task_id, data in cached_answers.items():
|
559 |
-
results_log.append({
|
560 |
-
"Task ID": task_id,
|
561 |
-
"Question": data["question"],
|
562 |
-
"Submitted Answer": data["answer"]
|
563 |
-
})
|
564 |
-
|
565 |
-
results_df = pd.DataFrame(results_log)
|
566 |
-
return final_status, results_df
|
567 |
-
|
568 |
-
except requests.exceptions.HTTPError as e:
|
569 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
570 |
-
try:
|
571 |
-
error_json = e.response.json()
|
572 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
573 |
-
except:
|
574 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
575 |
-
return f"Submission Failed: {error_detail}", None
|
576 |
-
|
577 |
-
except requests.exceptions.Timeout:
|
578 |
-
return "Submission Failed: The request timed out.", None
|
579 |
-
|
580 |
-
except Exception as e:
|
581 |
-
return f"Submission Failed: {e}", None
|
582 |
-
|
583 |
-
def clear_cache():
|
584 |
-
"""
|
585 |
-
Clear all cached data.
|
586 |
-
"""
|
587 |
-
global cached_answers, cached_questions, processing_status
|
588 |
-
cached_answers = {}
|
589 |
-
cached_questions = []
|
590 |
-
processing_status = {"is_processing": False, "progress": 0, "total": 0}
|
591 |
-
return "Cache cleared successfully.", None
|
592 |
-
|
593 |
-
# --- Enhanced Gradio Interface ---
|
594 |
-
with gr.Blocks(title="Intelligent Agent with Conditional Search") as demo:
|
595 |
-
gr.Markdown("# Intelligent Agent with Conditional Search")
|
596 |
-
gr.Markdown("This agent uses an LLM to decide when search is needed, optimizing for both accuracy and efficiency.")
|
597 |
-
|
598 |
-
with gr.Row():
|
599 |
-
gr.LoginButton()
|
600 |
-
clear_btn = gr.Button("Clear Cache", variant="secondary")
|
601 |
-
|
602 |
-
with gr.Tab("Step 1: Fetch Questions"):
|
603 |
-
gr.Markdown("### Fetch Questions from API")
|
604 |
-
fetch_btn = gr.Button("Fetch Questions", variant="primary")
|
605 |
-
fetch_status = gr.Textbox(label="Fetch Status", lines=2, interactive=False)
|
606 |
-
questions_table = gr.DataFrame(label="Available Questions", wrap=True)
|
607 |
-
|
608 |
-
fetch_btn.click(
|
609 |
-
fn=fetch_questions,
|
610 |
-
outputs=[fetch_status, questions_table]
|
611 |
-
)
|
612 |
-
|
613 |
-
with gr.Tab("Step 2: Generate Answers"):
|
614 |
-
gr.Markdown("### Generate Answers with Intelligent Search Decision")
|
615 |
-
|
616 |
-
with gr.Row():
|
617 |
-
model_choice = gr.Dropdown(
|
618 |
-
choices=["Llama 3.1 8B", "Mistral 7B"],
|
619 |
-
value="Llama 3.1 8B",
|
620 |
-
label="Select Model"
|
621 |
-
)
|
622 |
-
generate_btn = gr.Button("Start Answer Generation", variant="primary")
|
623 |
-
refresh_btn = gr.Button("Refresh Progress", variant="secondary")
|
624 |
-
|
625 |
-
generation_status = gr.Textbox(label="Generation Status", lines=2, interactive=False)
|
626 |
-
|
627 |
-
generate_btn.click(
|
628 |
-
fn=start_answer_generation,
|
629 |
-
inputs=[model_choice],
|
630 |
-
outputs=[generation_status]
|
631 |
-
)
|
632 |
-
|
633 |
-
refresh_btn.click(
|
634 |
-
fn=get_generation_progress,
|
635 |
-
outputs=[generation_status]
|
636 |
-
)
|
637 |
-
|
638 |
-
with gr.Tab("Step 3: Submit Results"):
|
639 |
-
gr.Markdown("### Submit Generated Answers")
|
640 |
-
submit_btn = gr.Button("Submit Cached Answers", variant="primary")
|
641 |
-
submission_status = gr.Textbox(label="Submission Status", lines=5, interactive=False)
|
642 |
-
final_results = gr.DataFrame(label="Final Submission Results", wrap=True)
|
643 |
-
|
644 |
-
submit_btn.click(
|
645 |
-
fn=submit_cached_answers,
|
646 |
-
outputs=[submission_status, final_results]
|
647 |
-
)
|
648 |
-
|
649 |
-
# Clear cache functionality
|
650 |
-
clear_btn.click(
|
651 |
-
fn=clear_cache,
|
652 |
-
outputs=[fetch_status, questions_table]
|
653 |
-
)
|
654 |
-
|
655 |
-
# Auto-refresh progress every 5 seconds when generation is active
|
656 |
-
demo.load(
|
657 |
-
fn=get_generation_progress,
|
658 |
-
outputs=[generation_status]
|
659 |
-
)
|
660 |
-
|
661 |
-
if __name__ == "__main__":
|
662 |
-
print("\n" + "-"*30 + " Intelligent Agent Starting " + "-"*30)
|
663 |
-
|
664 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
665 |
-
space_id_startup = os.getenv("SPACE_ID")
|
666 |
-
|
667 |
-
if space_host_startup:
|
668 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
669 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
670 |
-
else:
|
671 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
672 |
-
|
673 |
-
if space_id_startup:
|
674 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
675 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
676 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
677 |
-
else:
|
678 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
679 |
-
|
680 |
-
print("-"*(60 + len(" Intelligent Agent Starting ")) + "\n")
|
681 |
-
|
682 |
-
print("Launching Intelligent Agent Interface...")
|
683 |
-
demo.launch(debug=True, share=False)
|
|
|
185 |
|
186 |
return "\n\n".join(media_content) if media_content else ""
|
187 |
|
188 |
+
def _should_search(self, question: str, media_context: str = "") -> bool:
|
189 |
"""
|
190 |
+
Use LLM to determine if search is needed for the question, considering media context.
|
191 |
Returns True if search is recommended, False otherwise.
|
192 |
"""
|
193 |
decision_prompt = f"""Analyze this question and decide if it requires real-time information, recent data, or specific facts that might not be in your training data.
|
|
|
208 |
- Definitions of well-established concepts
|
209 |
- How-to instructions for common tasks
|
210 |
- Creative writing or opinion-based responses
|
211 |
+
- Questions that can be answered from attached media content
|
212 |
|
213 |
Question: "{question}"
|
214 |
|
215 |
+
{f"Media Context Available: {media_context[:500]}..." if media_context else "No media context available."}
|
216 |
+
|
217 |
Respond with only "SEARCH" or "NO_SEARCH" followed by a brief reason (max 20 words).
|
218 |
|
219 |
Example responses:
|
220 |
- "SEARCH - Current weather data needed"
|
221 |
- "NO_SEARCH - Mathematical concept, general knowledge sufficient"
|
222 |
+
- "NO_SEARCH - Can be answered from attached image content"
|
223 |
"""
|
224 |
|
225 |
try:
|
|
|
240 |
# Default to search if decision fails
|
241 |
return True
|
242 |
|
243 |
+
def _answer_with_llm(self, question: str, media_context: str = "") -> str:
|
244 |
"""
|
245 |
+
Generate answer using LLM without search, considering media context.
|
246 |
"""
|
247 |
+
context_section = f"\n\nMedia Context:\n{media_context}" if media_context else ""
|
248 |
+
|
249 |
answer_prompt = f"""You are a general AI assistant. I will ask you a question. YOUR ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
250 |
|
251 |
+
{context_section}
|
252 |
+
|
253 |
Question: {question}
|
254 |
|
255 |
Answer:"""
|
|
|
261 |
except Exception as e:
|
262 |
return f"Sorry, I encountered an error generating the response: {e}"
|
263 |
|
264 |
+
def _answer_with_search(self, question: str, media_context: str = "") -> str:
|
265 |
"""
|
266 |
+
Generate answer using search results and LLM, considering media context.
|
267 |
"""
|
268 |
try:
|
269 |
# Perform search
|
|
|
272 |
|
273 |
if self.debug:
|
274 |
print(f"Search results type: {type(search_results)}")
|
|
|
275 |
|
276 |
if not search_results:
|
277 |
+
return "No search results found. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question, media_context)
|
278 |
|
279 |
# Format search results - handle different result formats
|
|
|
|
|
|
|
|
|
|
|
280 |
if isinstance(search_results, str):
|
281 |
search_context = search_results
|
282 |
else:
|
|
|
289 |
link = result.get("link", "")
|
290 |
formatted_results.append(f"Title: {title}\nContent: {snippet}\nSource: {link}")
|
291 |
elif isinstance(result, str):
|
|
|
292 |
formatted_results.append(result)
|
293 |
else:
|
|
|
294 |
formatted_results.append(str(result))
|
295 |
|
296 |
search_context = "\n\n".join(formatted_results)
|
297 |
|
298 |
+
# Generate answer using search context and media context
|
299 |
+
context_section = f"\n\nMedia Context:\n{media_context}" if media_context else ""
|
300 |
+
|
301 |
answer_prompt = f"""You are a general AI assistant. I will ask you a question. Based on the search results below, provide an answer to the question. If the search results don't fully answer the question, you can supplement with your general knowledge.
|
302 |
Your ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
303 |
+
|
304 |
Question: {question}
|
305 |
|
306 |
Search Results:
|
307 |
{search_context}
|
308 |
|
309 |
+
{context_section}
|
310 |
+
|
311 |
Answer:"""
|
312 |
|
313 |
try:
|
|
|
336 |
return "Search completed but no usable results found."
|
337 |
|
338 |
except Exception as e:
|
339 |
+
return f"Search failed: {e}. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question, media_context)
|
340 |
|
341 |
+
def __call__(self, question: str, image_files: List[str] = None, audio_files: List[str] = None) -> str:
|
342 |
"""
|
343 |
+
Main entry point - process media files, decide whether to search, and generate appropriate response.
|
344 |
"""
|
345 |
if self.debug:
|
346 |
print(f"Agent received question: {question}")
|
347 |
+
print(f"Image files: {image_files}")
|
348 |
+
print(f"Audio files: {audio_files}")
|
349 |
|
350 |
# Early validation
|
351 |
if not question or not question.strip():
|
352 |
return "Please provide a valid question."
|
353 |
|
354 |
try:
|
355 |
+
# Process media files first
|
356 |
+
media_context = self._process_media_files(image_files, audio_files)
|
357 |
+
|
358 |
+
if self.debug and media_context:
|
359 |
+
print(f"Media context: {media_context[:200]}...")
|
360 |
+
|
361 |
# Decide whether to search
|
362 |
+
if self._should_search(question, media_context):
|
363 |
if self.debug:
|
364 |
print("Using search-based approach")
|
365 |
+
answer = self._answer_with_search(question, media_context)
|
366 |
else:
|
367 |
if self.debug:
|
368 |
print("Using LLM-only approach")
|
369 |
+
answer = self._answer_with_llm(question, media_context)
|
370 |
|
371 |
except Exception as e:
|
372 |
answer = f"Sorry, I encountered an error: {e}"
|
|
|
487 |
|
488 |
return f"Answer generation started using {model_choice}. Check progress."
|
489 |
|
490 |
+
def get_generation_prog
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|