Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,6 +15,9 @@ import io
|
|
| 15 |
import tempfile
|
| 16 |
import urllib.parse
|
| 17 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# --- Constants ---
|
| 20 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
@@ -24,6 +27,145 @@ cached_answers = {}
|
|
| 24 |
cached_questions = []
|
| 25 |
processing_status = {"is_processing": False, "progress": 0, "total": 0}
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
# --- File Download Utility ---
|
| 28 |
def download_attachment(url: str, temp_dir: str) -> Optional[str]:
|
| 29 |
"""
|
|
@@ -197,7 +339,7 @@ class AudioTranscriptionTool:
|
|
| 197 |
except:
|
| 198 |
return f"Audio transcription failed: {e}"
|
| 199 |
|
| 200 |
-
# --- Enhanced Intelligent Agent with
|
| 201 |
class IntelligentAgent:
|
| 202 |
def __init__(self, debug: bool = True, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"):
|
| 203 |
self.search = DuckDuckGoSearchTool()
|
|
@@ -205,6 +347,7 @@ class IntelligentAgent:
|
|
| 205 |
self.image_tool = ImageAnalysisTool()
|
| 206 |
self.audio_tool = AudioTranscriptionTool()
|
| 207 |
self.code_tool = CodeAnalysisTool(model_name)
|
|
|
|
| 208 |
self.debug = debug
|
| 209 |
if self.debug:
|
| 210 |
print(f"IntelligentAgent initialized with model: {model_name}")
|
|
@@ -242,6 +385,39 @@ class IntelligentAgent:
|
|
| 242 |
print(f"Both chat completion and text generation failed: {e}")
|
| 243 |
raise e
|
| 244 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
def _detect_and_download_attachments(self, question_data: dict) -> Tuple[List[str], List[str], List[str]]:
|
| 246 |
"""
|
| 247 |
Detect and download attachments from question data.
|
|
@@ -268,12 +444,17 @@ class IntelligentAgent:
|
|
| 268 |
elif isinstance(field_data, str):
|
| 269 |
attachments.append(field_data)
|
| 270 |
|
| 271 |
-
# Also check if the question text contains URLs
|
| 272 |
question_text = question_data.get('question', '')
|
| 273 |
if 'http' in question_text:
|
| 274 |
-
|
| 275 |
urls = re.findall(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', question_text)
|
| 276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
|
| 278 |
# Download and categorize attachments
|
| 279 |
for attachment in attachments:
|
|
@@ -376,9 +557,9 @@ class IntelligentAgent:
|
|
| 376 |
|
| 377 |
return "\n\n".join(attachment_content) if attachment_content else ""
|
| 378 |
|
| 379 |
-
def _should_search(self, question: str, attachment_context: str = "") -> bool:
|
| 380 |
"""
|
| 381 |
-
Use LLM to determine if search is needed for the question, considering attachment context.
|
| 382 |
Returns True if search is recommended, False otherwise.
|
| 383 |
"""
|
| 384 |
decision_prompt = f"""Analyze this question and decide if it requires real-time information, recent data, or specific facts that might not be in your training data.
|
|
@@ -400,19 +581,22 @@ SEARCH IS NOT NEEDED for:
|
|
| 400 |
- How-to instructions for common tasks
|
| 401 |
- Creative writing or opinion-based responses
|
| 402 |
- Questions that can be answered from attached files (code, images, audio)
|
|
|
|
| 403 |
- Code analysis, debugging, or explanation questions
|
| 404 |
-
- Questions about uploaded content
|
| 405 |
|
| 406 |
Question: "{question}"
|
| 407 |
|
| 408 |
{f"Attachment Context Available: {attachment_context[:500]}..." if attachment_context else "No attachment context available."}
|
| 409 |
|
|
|
|
|
|
|
| 410 |
Respond with only "SEARCH" or "NO_SEARCH" followed by a brief reason (max 20 words).
|
| 411 |
|
| 412 |
Example responses:
|
| 413 |
- "SEARCH - Current weather data needed"
|
| 414 |
- "NO_SEARCH - Mathematical concept, general knowledge sufficient"
|
| 415 |
-
- "NO_SEARCH - Can be answered from attached code/image content"
|
| 416 |
"""
|
| 417 |
|
| 418 |
try:
|
|
@@ -429,15 +613,23 @@ Example responses:
|
|
| 429 |
|
| 430 |
except Exception as e:
|
| 431 |
if self.debug:
|
| 432 |
-
print(f"Error in search decision: {e}, defaulting to no search for
|
| 433 |
-
# Default to no search if decision fails and there
|
| 434 |
-
return len(attachment_context) == 0
|
| 435 |
|
| 436 |
-
def _answer_with_llm(self, question: str, attachment_context: str = "") -> str:
|
| 437 |
"""
|
| 438 |
-
Generate answer using LLM without search, considering attachment context.
|
| 439 |
"""
|
| 440 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 441 |
|
| 442 |
answer_prompt = f"""You are a general AI assistant. I will ask you a question.
|
| 443 |
YOUR ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
|
@@ -456,9 +648,9 @@ Answer:"""
|
|
| 456 |
except Exception as e:
|
| 457 |
return f"Sorry, I encountered an error generating the response: {e}"
|
| 458 |
|
| 459 |
-
def _answer_with_search(self, question: str, attachment_context: str = "") -> str:
|
| 460 |
"""
|
| 461 |
-
Generate answer using search results and LLM, considering attachment context.
|
| 462 |
"""
|
| 463 |
try:
|
| 464 |
# Perform search
|
|
@@ -469,7 +661,7 @@ Answer:"""
|
|
| 469 |
print(f"Search results type: {type(search_results)}")
|
| 470 |
|
| 471 |
if not search_results:
|
| 472 |
-
return "No search results found. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question, attachment_context)
|
| 473 |
|
| 474 |
# Format search results - handle different result formats
|
| 475 |
if isinstance(search_results, str):
|
|
@@ -490,12 +682,20 @@ Answer:"""
|
|
| 490 |
|
| 491 |
search_context = "\n\n".join(formatted_results)
|
| 492 |
|
| 493 |
-
# Generate answer using search context and
|
| 494 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 495 |
|
| 496 |
answer_prompt = f"""You are a general AI assistant. I will ask you a question.
|
| 497 |
-
Based on the search results and the context
|
| 498 |
-
If the search results don't fully answer the question, you can supplement with your general knowledge.
|
| 499 |
Your ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
| 500 |
Do not add dot if your answer is a number.
|
| 501 |
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
|
|
@@ -505,10 +705,7 @@ Answer:"""
|
|
| 505 |
|
| 506 |
Question: {question}
|
| 507 |
|
| 508 |
-
|
| 509 |
-
{search_context}
|
| 510 |
-
|
| 511 |
-
{context_section}
|
| 512 |
|
| 513 |
Answer:"""
|
| 514 |
|
|
@@ -538,16 +735,16 @@ Answer:"""
|
|
| 538 |
return "Search completed but no usable results found."
|
| 539 |
|
| 540 |
except Exception as e:
|
| 541 |
-
return f"Search failed: {e}. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question, attachment_context)
|
| 542 |
|
| 543 |
def process_question_with_attachments(self, question_data: dict) -> str:
|
| 544 |
"""
|
| 545 |
-
Process a question that may have attachments.
|
| 546 |
"""
|
| 547 |
question_text = question_data.get('question', '')
|
| 548 |
|
| 549 |
if self.debug:
|
| 550 |
-
print(f"Processing question with potential attachments: {question_text[:100]}...")
|
| 551 |
|
| 552 |
try:
|
| 553 |
# Detect and download attachments
|
|
|
|
| 15 |
import tempfile
|
| 16 |
import urllib.parse
|
| 17 |
from pathlib import Path
|
| 18 |
+
import re
|
| 19 |
+
from bs4 import BeautifulSoup
|
| 20 |
+
import mimetypes
|
| 21 |
|
| 22 |
# --- Constants ---
|
| 23 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
| 27 |
cached_questions = []
|
| 28 |
processing_status = {"is_processing": False, "progress": 0, "total": 0}
|
| 29 |
|
| 30 |
+
# --- Web Content Fetcher ---
|
| 31 |
+
class WebContentFetcher:
|
| 32 |
+
def __init__(self, debug: bool = True):
|
| 33 |
+
self.debug = debug
|
| 34 |
+
self.session = requests.Session()
|
| 35 |
+
self.session.headers.update({
|
| 36 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
| 37 |
+
})
|
| 38 |
+
|
| 39 |
+
def extract_urls_from_text(self, text: str) -> List[str]:
|
| 40 |
+
"""Extract URLs from text using regex."""
|
| 41 |
+
url_pattern = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
|
| 42 |
+
urls = re.findall(url_pattern, text)
|
| 43 |
+
return list(set(urls)) # Remove duplicates
|
| 44 |
+
|
| 45 |
+
def fetch_url_content(self, url: str) -> Dict[str, str]:
|
| 46 |
+
"""
|
| 47 |
+
Fetch content from a URL and extract text, handling different content types.
|
| 48 |
+
Returns a dictionary with 'content', 'title', 'content_type', and 'error' keys.
|
| 49 |
+
"""
|
| 50 |
+
try:
|
| 51 |
+
# Clean the URL
|
| 52 |
+
url = url.strip()
|
| 53 |
+
if not url.startswith(('http://', 'https://')):
|
| 54 |
+
url = 'https://' + url
|
| 55 |
+
|
| 56 |
+
if self.debug:
|
| 57 |
+
print(f"Fetching URL: {url}")
|
| 58 |
+
|
| 59 |
+
response = self.session.get(url, timeout=30, allow_redirects=True)
|
| 60 |
+
response.raise_for_status()
|
| 61 |
+
|
| 62 |
+
content_type = response.headers.get('content-type', '').lower()
|
| 63 |
+
|
| 64 |
+
result = {
|
| 65 |
+
'url': url,
|
| 66 |
+
'content_type': content_type,
|
| 67 |
+
'title': '',
|
| 68 |
+
'content': '',
|
| 69 |
+
'error': None
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
# Handle different content types
|
| 73 |
+
if 'text/html' in content_type:
|
| 74 |
+
# Parse HTML content
|
| 75 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
| 76 |
+
|
| 77 |
+
# Extract title
|
| 78 |
+
title_tag = soup.find('title')
|
| 79 |
+
result['title'] = title_tag.get_text().strip() if title_tag else 'No title'
|
| 80 |
+
|
| 81 |
+
# Remove script and style elements
|
| 82 |
+
for script in soup(["script", "style"]):
|
| 83 |
+
script.decompose()
|
| 84 |
+
|
| 85 |
+
# Extract text content
|
| 86 |
+
text_content = soup.get_text()
|
| 87 |
+
|
| 88 |
+
# Clean up text
|
| 89 |
+
lines = (line.strip() for line in text_content.splitlines())
|
| 90 |
+
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
| 91 |
+
text_content = ' '.join(chunk for chunk in chunks if chunk)
|
| 92 |
+
|
| 93 |
+
# Limit content length
|
| 94 |
+
if len(text_content) > 8000:
|
| 95 |
+
text_content = text_content[:8000] + "... (truncated)"
|
| 96 |
+
|
| 97 |
+
result['content'] = text_content
|
| 98 |
+
|
| 99 |
+
elif 'text/plain' in content_type:
|
| 100 |
+
# Handle plain text
|
| 101 |
+
text_content = response.text
|
| 102 |
+
if len(text_content) > 8000:
|
| 103 |
+
text_content = text_content[:8000] + "... (truncated)"
|
| 104 |
+
result['content'] = text_content
|
| 105 |
+
result['title'] = f"Text document from {url}"
|
| 106 |
+
|
| 107 |
+
elif 'application/json' in content_type:
|
| 108 |
+
# Handle JSON content
|
| 109 |
+
try:
|
| 110 |
+
json_data = response.json()
|
| 111 |
+
result['content'] = json.dumps(json_data, indent=2)[:8000]
|
| 112 |
+
result['title'] = f"JSON document from {url}"
|
| 113 |
+
except:
|
| 114 |
+
result['content'] = response.text[:8000]
|
| 115 |
+
result['title'] = f"JSON document from {url}"
|
| 116 |
+
|
| 117 |
+
elif any(x in content_type for x in ['application/pdf', 'application/msword', 'application/vnd.openxmlformats']):
|
| 118 |
+
# Handle document files
|
| 119 |
+
result['content'] = f"Document file detected ({content_type}). Content extraction for this file type is not implemented."
|
| 120 |
+
result['title'] = f"Document from {url}"
|
| 121 |
+
|
| 122 |
+
else:
|
| 123 |
+
# Handle other content types
|
| 124 |
+
if response.text:
|
| 125 |
+
content = response.text[:8000]
|
| 126 |
+
result['content'] = content
|
| 127 |
+
result['title'] = f"Content from {url}"
|
| 128 |
+
else:
|
| 129 |
+
result['content'] = f"Non-text content detected ({content_type})"
|
| 130 |
+
result['title'] = f"File from {url}"
|
| 131 |
+
|
| 132 |
+
if self.debug:
|
| 133 |
+
print(f"Successfully fetched content from {url}: {len(result['content'])} characters")
|
| 134 |
+
|
| 135 |
+
return result
|
| 136 |
+
|
| 137 |
+
except requests.exceptions.RequestException as e:
|
| 138 |
+
error_msg = f"Failed to fetch {url}: {str(e)}"
|
| 139 |
+
if self.debug:
|
| 140 |
+
print(error_msg)
|
| 141 |
+
return {
|
| 142 |
+
'url': url,
|
| 143 |
+
'content_type': 'error',
|
| 144 |
+
'title': f"Error fetching {url}",
|
| 145 |
+
'content': '',
|
| 146 |
+
'error': error_msg
|
| 147 |
+
}
|
| 148 |
+
except Exception as e:
|
| 149 |
+
error_msg = f"Unexpected error fetching {url}: {str(e)}"
|
| 150 |
+
if self.debug:
|
| 151 |
+
print(error_msg)
|
| 152 |
+
return {
|
| 153 |
+
'url': url,
|
| 154 |
+
'content_type': 'error',
|
| 155 |
+
'title': f"Error fetching {url}",
|
| 156 |
+
'content': '',
|
| 157 |
+
'error': error_msg
|
| 158 |
+
}
|
| 159 |
+
|
| 160 |
+
def fetch_multiple_urls(self, urls: List[str]) -> List[Dict[str, str]]:
|
| 161 |
+
"""Fetch content from multiple URLs."""
|
| 162 |
+
results = []
|
| 163 |
+
for url in urls[:5]: # Limit to 5 URLs to avoid excessive processing
|
| 164 |
+
result = self.fetch_url_content(url)
|
| 165 |
+
results.append(result)
|
| 166 |
+
time.sleep(1) # Be respectful to servers
|
| 167 |
+
return results
|
| 168 |
+
|
| 169 |
# --- File Download Utility ---
|
| 170 |
def download_attachment(url: str, temp_dir: str) -> Optional[str]:
|
| 171 |
"""
|
|
|
|
| 339 |
except:
|
| 340 |
return f"Audio transcription failed: {e}"
|
| 341 |
|
| 342 |
+
# --- Enhanced Intelligent Agent with URL Processing ---
|
| 343 |
class IntelligentAgent:
|
| 344 |
def __init__(self, debug: bool = True, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"):
|
| 345 |
self.search = DuckDuckGoSearchTool()
|
|
|
|
| 347 |
self.image_tool = ImageAnalysisTool()
|
| 348 |
self.audio_tool = AudioTranscriptionTool()
|
| 349 |
self.code_tool = CodeAnalysisTool(model_name)
|
| 350 |
+
self.web_fetcher = WebContentFetcher(debug)
|
| 351 |
self.debug = debug
|
| 352 |
if self.debug:
|
| 353 |
print(f"IntelligentAgent initialized with model: {model_name}")
|
|
|
|
| 385 |
print(f"Both chat completion and text generation failed: {e}")
|
| 386 |
raise e
|
| 387 |
|
| 388 |
+
def _extract_and_process_urls(self, question_text: str) -> str:
|
| 389 |
+
"""
|
| 390 |
+
Extract URLs from question text and fetch their content.
|
| 391 |
+
Returns formatted content from all URLs.
|
| 392 |
+
"""
|
| 393 |
+
urls = self.web_fetcher.extract_urls_from_text(question_text)
|
| 394 |
+
|
| 395 |
+
if not urls:
|
| 396 |
+
return ""
|
| 397 |
+
|
| 398 |
+
if self.debug:
|
| 399 |
+
print(f"Found {len(urls)} URLs in question: {urls}")
|
| 400 |
+
|
| 401 |
+
url_contents = self.web_fetcher.fetch_multiple_urls(urls)
|
| 402 |
+
|
| 403 |
+
if not url_contents:
|
| 404 |
+
return ""
|
| 405 |
+
|
| 406 |
+
# Format the content
|
| 407 |
+
formatted_content = []
|
| 408 |
+
for content_data in url_contents:
|
| 409 |
+
if content_data['error']:
|
| 410 |
+
formatted_content.append(f"URL: {content_data['url']}\nError: {content_data['error']}")
|
| 411 |
+
else:
|
| 412 |
+
formatted_content.append(
|
| 413 |
+
f"URL: {content_data['url']}\n"
|
| 414 |
+
f"Title: {content_data['title']}\n"
|
| 415 |
+
f"Content Type: {content_data['content_type']}\n"
|
| 416 |
+
f"Content: {content_data['content']}"
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
return "\n\n" + "="*50 + "\n".join(formatted_content) + "\n" + "="*50
|
| 420 |
+
|
| 421 |
def _detect_and_download_attachments(self, question_data: dict) -> Tuple[List[str], List[str], List[str]]:
|
| 422 |
"""
|
| 423 |
Detect and download attachments from question data.
|
|
|
|
| 444 |
elif isinstance(field_data, str):
|
| 445 |
attachments.append(field_data)
|
| 446 |
|
| 447 |
+
# Also check if the question text contains file URLs (not web URLs)
|
| 448 |
question_text = question_data.get('question', '')
|
| 449 |
if 'http' in question_text:
|
| 450 |
+
# Only consider URLs that likely point to files, not web pages
|
| 451 |
urls = re.findall(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', question_text)
|
| 452 |
+
for url in urls:
|
| 453 |
+
# Check if URL likely points to a file (has file extension)
|
| 454 |
+
parsed = urllib.parse.urlparse(url)
|
| 455 |
+
path = parsed.path.lower()
|
| 456 |
+
if any(path.endswith(ext) for ext in ['.jpg', '.jpeg', '.png', '.gif', '.mp3', '.wav', '.py', '.txt', '.pdf']):
|
| 457 |
+
attachments.append(url)
|
| 458 |
|
| 459 |
# Download and categorize attachments
|
| 460 |
for attachment in attachments:
|
|
|
|
| 557 |
|
| 558 |
return "\n\n".join(attachment_content) if attachment_content else ""
|
| 559 |
|
| 560 |
+
def _should_search(self, question: str, attachment_context: str = "", url_context: str = "") -> bool:
|
| 561 |
"""
|
| 562 |
+
Use LLM to determine if search is needed for the question, considering attachment and URL context.
|
| 563 |
Returns True if search is recommended, False otherwise.
|
| 564 |
"""
|
| 565 |
decision_prompt = f"""Analyze this question and decide if it requires real-time information, recent data, or specific facts that might not be in your training data.
|
|
|
|
| 581 |
- How-to instructions for common tasks
|
| 582 |
- Creative writing or opinion-based responses
|
| 583 |
- Questions that can be answered from attached files (code, images, audio)
|
| 584 |
+
- Questions that can be answered from URL content provided
|
| 585 |
- Code analysis, debugging, or explanation questions
|
| 586 |
+
- Questions about uploaded or linked content
|
| 587 |
|
| 588 |
Question: "{question}"
|
| 589 |
|
| 590 |
{f"Attachment Context Available: {attachment_context[:500]}..." if attachment_context else "No attachment context available."}
|
| 591 |
|
| 592 |
+
{f"URL Content Available: {url_context[:500]}..." if url_context else "No URL content available."}
|
| 593 |
+
|
| 594 |
Respond with only "SEARCH" or "NO_SEARCH" followed by a brief reason (max 20 words).
|
| 595 |
|
| 596 |
Example responses:
|
| 597 |
- "SEARCH - Current weather data needed"
|
| 598 |
- "NO_SEARCH - Mathematical concept, general knowledge sufficient"
|
| 599 |
+
- "NO_SEARCH - Can be answered from attached code/image/URL content"
|
| 600 |
"""
|
| 601 |
|
| 602 |
try:
|
|
|
|
| 613 |
|
| 614 |
except Exception as e:
|
| 615 |
if self.debug:
|
| 616 |
+
print(f"Error in search decision: {e}, defaulting to no search for questions with context")
|
| 617 |
+
# Default to no search if decision fails and there is context available
|
| 618 |
+
return len(attachment_context) == 0 and len(url_context) == 0
|
| 619 |
|
| 620 |
+
def _answer_with_llm(self, question: str, attachment_context: str = "", url_context: str = "") -> str:
|
| 621 |
"""
|
| 622 |
+
Generate answer using LLM without search, considering attachment and URL context.
|
| 623 |
"""
|
| 624 |
+
context_sections = []
|
| 625 |
+
|
| 626 |
+
if attachment_context:
|
| 627 |
+
context_sections.append(f"Attachment Context:\n{attachment_context}")
|
| 628 |
+
|
| 629 |
+
if url_context:
|
| 630 |
+
context_sections.append(f"URL Content:\n{url_context}")
|
| 631 |
+
|
| 632 |
+
context_section = "\n\n".join(context_sections) if context_sections else ""
|
| 633 |
|
| 634 |
answer_prompt = f"""You are a general AI assistant. I will ask you a question.
|
| 635 |
YOUR ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
|
|
|
| 648 |
except Exception as e:
|
| 649 |
return f"Sorry, I encountered an error generating the response: {e}"
|
| 650 |
|
| 651 |
+
def _answer_with_search(self, question: str, attachment_context: str = "", url_context: str = "") -> str:
|
| 652 |
"""
|
| 653 |
+
Generate answer using search results and LLM, considering attachment and URL context.
|
| 654 |
"""
|
| 655 |
try:
|
| 656 |
# Perform search
|
|
|
|
| 661 |
print(f"Search results type: {type(search_results)}")
|
| 662 |
|
| 663 |
if not search_results:
|
| 664 |
+
return "No search results found. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question, attachment_context, url_context)
|
| 665 |
|
| 666 |
# Format search results - handle different result formats
|
| 667 |
if isinstance(search_results, str):
|
|
|
|
| 682 |
|
| 683 |
search_context = "\n\n".join(formatted_results)
|
| 684 |
|
| 685 |
+
# Generate answer using search context, attachment context, and URL context
|
| 686 |
+
context_sections = [f"Search Results:\n{search_context}"]
|
| 687 |
+
|
| 688 |
+
if attachment_context:
|
| 689 |
+
context_sections.append(f"Attachment Context:\n{attachment_context}")
|
| 690 |
+
|
| 691 |
+
if url_context:
|
| 692 |
+
context_sections.append(f"URL Content:\n{url_context}")
|
| 693 |
+
|
| 694 |
+
full_context = "\n\n".join(context_sections)
|
| 695 |
|
| 696 |
answer_prompt = f"""You are a general AI assistant. I will ask you a question.
|
| 697 |
+
Based on the search results and the context sections below, provide an answer to the question.
|
| 698 |
+
If the search results don't fully answer the question, you can supplement with information from other context sections or your general knowledge.
|
| 699 |
Your ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
| 700 |
Do not add dot if your answer is a number.
|
| 701 |
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
|
|
|
|
| 705 |
|
| 706 |
Question: {question}
|
| 707 |
|
| 708 |
+
{full_context}
|
|
|
|
|
|
|
|
|
|
| 709 |
|
| 710 |
Answer:"""
|
| 711 |
|
|
|
|
| 735 |
return "Search completed but no usable results found."
|
| 736 |
|
| 737 |
except Exception as e:
|
| 738 |
+
return f"Search failed: {e}. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question, attachment_context, url_context)
|
| 739 |
|
| 740 |
def process_question_with_attachments(self, question_data: dict) -> str:
|
| 741 |
"""
|
| 742 |
+
Process a question that may have attachments and URLs.
|
| 743 |
"""
|
| 744 |
question_text = question_data.get('question', '')
|
| 745 |
|
| 746 |
if self.debug:
|
| 747 |
+
print(f"Processing question with potential attachments and URLs: {question_text[:100]}...")
|
| 748 |
|
| 749 |
try:
|
| 750 |
# Detect and download attachments
|