Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -15,6 +15,9 @@ import io
|
|
15 |
import tempfile
|
16 |
import urllib.parse
|
17 |
from pathlib import Path
|
|
|
|
|
|
|
18 |
|
19 |
# --- Constants ---
|
20 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
@@ -24,6 +27,145 @@ cached_answers = {}
|
|
24 |
cached_questions = []
|
25 |
processing_status = {"is_processing": False, "progress": 0, "total": 0}
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
# --- File Download Utility ---
|
28 |
def download_attachment(url: str, temp_dir: str) -> Optional[str]:
|
29 |
"""
|
@@ -197,7 +339,7 @@ class AudioTranscriptionTool:
|
|
197 |
except:
|
198 |
return f"Audio transcription failed: {e}"
|
199 |
|
200 |
-
# --- Enhanced Intelligent Agent with
|
201 |
class IntelligentAgent:
|
202 |
def __init__(self, debug: bool = True, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"):
|
203 |
self.search = DuckDuckGoSearchTool()
|
@@ -205,6 +347,7 @@ class IntelligentAgent:
|
|
205 |
self.image_tool = ImageAnalysisTool()
|
206 |
self.audio_tool = AudioTranscriptionTool()
|
207 |
self.code_tool = CodeAnalysisTool(model_name)
|
|
|
208 |
self.debug = debug
|
209 |
if self.debug:
|
210 |
print(f"IntelligentAgent initialized with model: {model_name}")
|
@@ -242,6 +385,39 @@ class IntelligentAgent:
|
|
242 |
print(f"Both chat completion and text generation failed: {e}")
|
243 |
raise e
|
244 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
def _detect_and_download_attachments(self, question_data: dict) -> Tuple[List[str], List[str], List[str]]:
|
246 |
"""
|
247 |
Detect and download attachments from question data.
|
@@ -268,12 +444,17 @@ class IntelligentAgent:
|
|
268 |
elif isinstance(field_data, str):
|
269 |
attachments.append(field_data)
|
270 |
|
271 |
-
# Also check if the question text contains URLs
|
272 |
question_text = question_data.get('question', '')
|
273 |
if 'http' in question_text:
|
274 |
-
|
275 |
urls = re.findall(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', question_text)
|
276 |
-
|
|
|
|
|
|
|
|
|
|
|
277 |
|
278 |
# Download and categorize attachments
|
279 |
for attachment in attachments:
|
@@ -376,9 +557,9 @@ class IntelligentAgent:
|
|
376 |
|
377 |
return "\n\n".join(attachment_content) if attachment_content else ""
|
378 |
|
379 |
-
def _should_search(self, question: str, attachment_context: str = "") -> bool:
|
380 |
"""
|
381 |
-
Use LLM to determine if search is needed for the question, considering attachment context.
|
382 |
Returns True if search is recommended, False otherwise.
|
383 |
"""
|
384 |
decision_prompt = f"""Analyze this question and decide if it requires real-time information, recent data, or specific facts that might not be in your training data.
|
@@ -400,19 +581,22 @@ SEARCH IS NOT NEEDED for:
|
|
400 |
- How-to instructions for common tasks
|
401 |
- Creative writing or opinion-based responses
|
402 |
- Questions that can be answered from attached files (code, images, audio)
|
|
|
403 |
- Code analysis, debugging, or explanation questions
|
404 |
-
- Questions about uploaded content
|
405 |
|
406 |
Question: "{question}"
|
407 |
|
408 |
{f"Attachment Context Available: {attachment_context[:500]}..." if attachment_context else "No attachment context available."}
|
409 |
|
|
|
|
|
410 |
Respond with only "SEARCH" or "NO_SEARCH" followed by a brief reason (max 20 words).
|
411 |
|
412 |
Example responses:
|
413 |
- "SEARCH - Current weather data needed"
|
414 |
- "NO_SEARCH - Mathematical concept, general knowledge sufficient"
|
415 |
-
- "NO_SEARCH - Can be answered from attached code/image content"
|
416 |
"""
|
417 |
|
418 |
try:
|
@@ -429,15 +613,23 @@ Example responses:
|
|
429 |
|
430 |
except Exception as e:
|
431 |
if self.debug:
|
432 |
-
print(f"Error in search decision: {e}, defaulting to no search for
|
433 |
-
# Default to no search if decision fails and there
|
434 |
-
return len(attachment_context) == 0
|
435 |
|
436 |
-
def _answer_with_llm(self, question: str, attachment_context: str = "") -> str:
|
437 |
"""
|
438 |
-
Generate answer using LLM without search, considering attachment context.
|
439 |
"""
|
440 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
441 |
|
442 |
answer_prompt = f"""You are a general AI assistant. I will ask you a question.
|
443 |
YOUR ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
@@ -456,9 +648,9 @@ Answer:"""
|
|
456 |
except Exception as e:
|
457 |
return f"Sorry, I encountered an error generating the response: {e}"
|
458 |
|
459 |
-
def _answer_with_search(self, question: str, attachment_context: str = "") -> str:
|
460 |
"""
|
461 |
-
Generate answer using search results and LLM, considering attachment context.
|
462 |
"""
|
463 |
try:
|
464 |
# Perform search
|
@@ -469,7 +661,7 @@ Answer:"""
|
|
469 |
print(f"Search results type: {type(search_results)}")
|
470 |
|
471 |
if not search_results:
|
472 |
-
return "No search results found. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question, attachment_context)
|
473 |
|
474 |
# Format search results - handle different result formats
|
475 |
if isinstance(search_results, str):
|
@@ -490,12 +682,20 @@ Answer:"""
|
|
490 |
|
491 |
search_context = "\n\n".join(formatted_results)
|
492 |
|
493 |
-
# Generate answer using search context and
|
494 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
495 |
|
496 |
answer_prompt = f"""You are a general AI assistant. I will ask you a question.
|
497 |
-
Based on the search results and the context
|
498 |
-
If the search results don't fully answer the question, you can supplement with your general knowledge.
|
499 |
Your ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
500 |
Do not add dot if your answer is a number.
|
501 |
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
|
@@ -505,10 +705,7 @@ Answer:"""
|
|
505 |
|
506 |
Question: {question}
|
507 |
|
508 |
-
|
509 |
-
{search_context}
|
510 |
-
|
511 |
-
{context_section}
|
512 |
|
513 |
Answer:"""
|
514 |
|
@@ -538,16 +735,16 @@ Answer:"""
|
|
538 |
return "Search completed but no usable results found."
|
539 |
|
540 |
except Exception as e:
|
541 |
-
return f"Search failed: {e}. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question, attachment_context)
|
542 |
|
543 |
def process_question_with_attachments(self, question_data: dict) -> str:
|
544 |
"""
|
545 |
-
Process a question that may have attachments.
|
546 |
"""
|
547 |
question_text = question_data.get('question', '')
|
548 |
|
549 |
if self.debug:
|
550 |
-
print(f"Processing question with potential attachments: {question_text[:100]}...")
|
551 |
|
552 |
try:
|
553 |
# Detect and download attachments
|
|
|
15 |
import tempfile
|
16 |
import urllib.parse
|
17 |
from pathlib import Path
|
18 |
+
import re
|
19 |
+
from bs4 import BeautifulSoup
|
20 |
+
import mimetypes
|
21 |
|
22 |
# --- Constants ---
|
23 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
27 |
cached_questions = []
|
28 |
processing_status = {"is_processing": False, "progress": 0, "total": 0}
|
29 |
|
30 |
+
# --- Web Content Fetcher ---
|
31 |
+
class WebContentFetcher:
|
32 |
+
def __init__(self, debug: bool = True):
|
33 |
+
self.debug = debug
|
34 |
+
self.session = requests.Session()
|
35 |
+
self.session.headers.update({
|
36 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
37 |
+
})
|
38 |
+
|
39 |
+
def extract_urls_from_text(self, text: str) -> List[str]:
|
40 |
+
"""Extract URLs from text using regex."""
|
41 |
+
url_pattern = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
|
42 |
+
urls = re.findall(url_pattern, text)
|
43 |
+
return list(set(urls)) # Remove duplicates
|
44 |
+
|
45 |
+
def fetch_url_content(self, url: str) -> Dict[str, str]:
|
46 |
+
"""
|
47 |
+
Fetch content from a URL and extract text, handling different content types.
|
48 |
+
Returns a dictionary with 'content', 'title', 'content_type', and 'error' keys.
|
49 |
+
"""
|
50 |
+
try:
|
51 |
+
# Clean the URL
|
52 |
+
url = url.strip()
|
53 |
+
if not url.startswith(('http://', 'https://')):
|
54 |
+
url = 'https://' + url
|
55 |
+
|
56 |
+
if self.debug:
|
57 |
+
print(f"Fetching URL: {url}")
|
58 |
+
|
59 |
+
response = self.session.get(url, timeout=30, allow_redirects=True)
|
60 |
+
response.raise_for_status()
|
61 |
+
|
62 |
+
content_type = response.headers.get('content-type', '').lower()
|
63 |
+
|
64 |
+
result = {
|
65 |
+
'url': url,
|
66 |
+
'content_type': content_type,
|
67 |
+
'title': '',
|
68 |
+
'content': '',
|
69 |
+
'error': None
|
70 |
+
}
|
71 |
+
|
72 |
+
# Handle different content types
|
73 |
+
if 'text/html' in content_type:
|
74 |
+
# Parse HTML content
|
75 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
76 |
+
|
77 |
+
# Extract title
|
78 |
+
title_tag = soup.find('title')
|
79 |
+
result['title'] = title_tag.get_text().strip() if title_tag else 'No title'
|
80 |
+
|
81 |
+
# Remove script and style elements
|
82 |
+
for script in soup(["script", "style"]):
|
83 |
+
script.decompose()
|
84 |
+
|
85 |
+
# Extract text content
|
86 |
+
text_content = soup.get_text()
|
87 |
+
|
88 |
+
# Clean up text
|
89 |
+
lines = (line.strip() for line in text_content.splitlines())
|
90 |
+
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
91 |
+
text_content = ' '.join(chunk for chunk in chunks if chunk)
|
92 |
+
|
93 |
+
# Limit content length
|
94 |
+
if len(text_content) > 8000:
|
95 |
+
text_content = text_content[:8000] + "... (truncated)"
|
96 |
+
|
97 |
+
result['content'] = text_content
|
98 |
+
|
99 |
+
elif 'text/plain' in content_type:
|
100 |
+
# Handle plain text
|
101 |
+
text_content = response.text
|
102 |
+
if len(text_content) > 8000:
|
103 |
+
text_content = text_content[:8000] + "... (truncated)"
|
104 |
+
result['content'] = text_content
|
105 |
+
result['title'] = f"Text document from {url}"
|
106 |
+
|
107 |
+
elif 'application/json' in content_type:
|
108 |
+
# Handle JSON content
|
109 |
+
try:
|
110 |
+
json_data = response.json()
|
111 |
+
result['content'] = json.dumps(json_data, indent=2)[:8000]
|
112 |
+
result['title'] = f"JSON document from {url}"
|
113 |
+
except:
|
114 |
+
result['content'] = response.text[:8000]
|
115 |
+
result['title'] = f"JSON document from {url}"
|
116 |
+
|
117 |
+
elif any(x in content_type for x in ['application/pdf', 'application/msword', 'application/vnd.openxmlformats']):
|
118 |
+
# Handle document files
|
119 |
+
result['content'] = f"Document file detected ({content_type}). Content extraction for this file type is not implemented."
|
120 |
+
result['title'] = f"Document from {url}"
|
121 |
+
|
122 |
+
else:
|
123 |
+
# Handle other content types
|
124 |
+
if response.text:
|
125 |
+
content = response.text[:8000]
|
126 |
+
result['content'] = content
|
127 |
+
result['title'] = f"Content from {url}"
|
128 |
+
else:
|
129 |
+
result['content'] = f"Non-text content detected ({content_type})"
|
130 |
+
result['title'] = f"File from {url}"
|
131 |
+
|
132 |
+
if self.debug:
|
133 |
+
print(f"Successfully fetched content from {url}: {len(result['content'])} characters")
|
134 |
+
|
135 |
+
return result
|
136 |
+
|
137 |
+
except requests.exceptions.RequestException as e:
|
138 |
+
error_msg = f"Failed to fetch {url}: {str(e)}"
|
139 |
+
if self.debug:
|
140 |
+
print(error_msg)
|
141 |
+
return {
|
142 |
+
'url': url,
|
143 |
+
'content_type': 'error',
|
144 |
+
'title': f"Error fetching {url}",
|
145 |
+
'content': '',
|
146 |
+
'error': error_msg
|
147 |
+
}
|
148 |
+
except Exception as e:
|
149 |
+
error_msg = f"Unexpected error fetching {url}: {str(e)}"
|
150 |
+
if self.debug:
|
151 |
+
print(error_msg)
|
152 |
+
return {
|
153 |
+
'url': url,
|
154 |
+
'content_type': 'error',
|
155 |
+
'title': f"Error fetching {url}",
|
156 |
+
'content': '',
|
157 |
+
'error': error_msg
|
158 |
+
}
|
159 |
+
|
160 |
+
def fetch_multiple_urls(self, urls: List[str]) -> List[Dict[str, str]]:
|
161 |
+
"""Fetch content from multiple URLs."""
|
162 |
+
results = []
|
163 |
+
for url in urls[:5]: # Limit to 5 URLs to avoid excessive processing
|
164 |
+
result = self.fetch_url_content(url)
|
165 |
+
results.append(result)
|
166 |
+
time.sleep(1) # Be respectful to servers
|
167 |
+
return results
|
168 |
+
|
169 |
# --- File Download Utility ---
|
170 |
def download_attachment(url: str, temp_dir: str) -> Optional[str]:
|
171 |
"""
|
|
|
339 |
except:
|
340 |
return f"Audio transcription failed: {e}"
|
341 |
|
342 |
+
# --- Enhanced Intelligent Agent with URL Processing ---
|
343 |
class IntelligentAgent:
|
344 |
def __init__(self, debug: bool = True, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"):
|
345 |
self.search = DuckDuckGoSearchTool()
|
|
|
347 |
self.image_tool = ImageAnalysisTool()
|
348 |
self.audio_tool = AudioTranscriptionTool()
|
349 |
self.code_tool = CodeAnalysisTool(model_name)
|
350 |
+
self.web_fetcher = WebContentFetcher(debug)
|
351 |
self.debug = debug
|
352 |
if self.debug:
|
353 |
print(f"IntelligentAgent initialized with model: {model_name}")
|
|
|
385 |
print(f"Both chat completion and text generation failed: {e}")
|
386 |
raise e
|
387 |
|
388 |
+
def _extract_and_process_urls(self, question_text: str) -> str:
|
389 |
+
"""
|
390 |
+
Extract URLs from question text and fetch their content.
|
391 |
+
Returns formatted content from all URLs.
|
392 |
+
"""
|
393 |
+
urls = self.web_fetcher.extract_urls_from_text(question_text)
|
394 |
+
|
395 |
+
if not urls:
|
396 |
+
return ""
|
397 |
+
|
398 |
+
if self.debug:
|
399 |
+
print(f"Found {len(urls)} URLs in question: {urls}")
|
400 |
+
|
401 |
+
url_contents = self.web_fetcher.fetch_multiple_urls(urls)
|
402 |
+
|
403 |
+
if not url_contents:
|
404 |
+
return ""
|
405 |
+
|
406 |
+
# Format the content
|
407 |
+
formatted_content = []
|
408 |
+
for content_data in url_contents:
|
409 |
+
if content_data['error']:
|
410 |
+
formatted_content.append(f"URL: {content_data['url']}\nError: {content_data['error']}")
|
411 |
+
else:
|
412 |
+
formatted_content.append(
|
413 |
+
f"URL: {content_data['url']}\n"
|
414 |
+
f"Title: {content_data['title']}\n"
|
415 |
+
f"Content Type: {content_data['content_type']}\n"
|
416 |
+
f"Content: {content_data['content']}"
|
417 |
+
)
|
418 |
+
|
419 |
+
return "\n\n" + "="*50 + "\n".join(formatted_content) + "\n" + "="*50
|
420 |
+
|
421 |
def _detect_and_download_attachments(self, question_data: dict) -> Tuple[List[str], List[str], List[str]]:
|
422 |
"""
|
423 |
Detect and download attachments from question data.
|
|
|
444 |
elif isinstance(field_data, str):
|
445 |
attachments.append(field_data)
|
446 |
|
447 |
+
# Also check if the question text contains file URLs (not web URLs)
|
448 |
question_text = question_data.get('question', '')
|
449 |
if 'http' in question_text:
|
450 |
+
# Only consider URLs that likely point to files, not web pages
|
451 |
urls = re.findall(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', question_text)
|
452 |
+
for url in urls:
|
453 |
+
# Check if URL likely points to a file (has file extension)
|
454 |
+
parsed = urllib.parse.urlparse(url)
|
455 |
+
path = parsed.path.lower()
|
456 |
+
if any(path.endswith(ext) for ext in ['.jpg', '.jpeg', '.png', '.gif', '.mp3', '.wav', '.py', '.txt', '.pdf']):
|
457 |
+
attachments.append(url)
|
458 |
|
459 |
# Download and categorize attachments
|
460 |
for attachment in attachments:
|
|
|
557 |
|
558 |
return "\n\n".join(attachment_content) if attachment_content else ""
|
559 |
|
560 |
+
def _should_search(self, question: str, attachment_context: str = "", url_context: str = "") -> bool:
|
561 |
"""
|
562 |
+
Use LLM to determine if search is needed for the question, considering attachment and URL context.
|
563 |
Returns True if search is recommended, False otherwise.
|
564 |
"""
|
565 |
decision_prompt = f"""Analyze this question and decide if it requires real-time information, recent data, or specific facts that might not be in your training data.
|
|
|
581 |
- How-to instructions for common tasks
|
582 |
- Creative writing or opinion-based responses
|
583 |
- Questions that can be answered from attached files (code, images, audio)
|
584 |
+
- Questions that can be answered from URL content provided
|
585 |
- Code analysis, debugging, or explanation questions
|
586 |
+
- Questions about uploaded or linked content
|
587 |
|
588 |
Question: "{question}"
|
589 |
|
590 |
{f"Attachment Context Available: {attachment_context[:500]}..." if attachment_context else "No attachment context available."}
|
591 |
|
592 |
+
{f"URL Content Available: {url_context[:500]}..." if url_context else "No URL content available."}
|
593 |
+
|
594 |
Respond with only "SEARCH" or "NO_SEARCH" followed by a brief reason (max 20 words).
|
595 |
|
596 |
Example responses:
|
597 |
- "SEARCH - Current weather data needed"
|
598 |
- "NO_SEARCH - Mathematical concept, general knowledge sufficient"
|
599 |
+
- "NO_SEARCH - Can be answered from attached code/image/URL content"
|
600 |
"""
|
601 |
|
602 |
try:
|
|
|
613 |
|
614 |
except Exception as e:
|
615 |
if self.debug:
|
616 |
+
print(f"Error in search decision: {e}, defaulting to no search for questions with context")
|
617 |
+
# Default to no search if decision fails and there is context available
|
618 |
+
return len(attachment_context) == 0 and len(url_context) == 0
|
619 |
|
620 |
+
def _answer_with_llm(self, question: str, attachment_context: str = "", url_context: str = "") -> str:
|
621 |
"""
|
622 |
+
Generate answer using LLM without search, considering attachment and URL context.
|
623 |
"""
|
624 |
+
context_sections = []
|
625 |
+
|
626 |
+
if attachment_context:
|
627 |
+
context_sections.append(f"Attachment Context:\n{attachment_context}")
|
628 |
+
|
629 |
+
if url_context:
|
630 |
+
context_sections.append(f"URL Content:\n{url_context}")
|
631 |
+
|
632 |
+
context_section = "\n\n".join(context_sections) if context_sections else ""
|
633 |
|
634 |
answer_prompt = f"""You are a general AI assistant. I will ask you a question.
|
635 |
YOUR ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
|
|
648 |
except Exception as e:
|
649 |
return f"Sorry, I encountered an error generating the response: {e}"
|
650 |
|
651 |
+
def _answer_with_search(self, question: str, attachment_context: str = "", url_context: str = "") -> str:
|
652 |
"""
|
653 |
+
Generate answer using search results and LLM, considering attachment and URL context.
|
654 |
"""
|
655 |
try:
|
656 |
# Perform search
|
|
|
661 |
print(f"Search results type: {type(search_results)}")
|
662 |
|
663 |
if not search_results:
|
664 |
+
return "No search results found. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question, attachment_context, url_context)
|
665 |
|
666 |
# Format search results - handle different result formats
|
667 |
if isinstance(search_results, str):
|
|
|
682 |
|
683 |
search_context = "\n\n".join(formatted_results)
|
684 |
|
685 |
+
# Generate answer using search context, attachment context, and URL context
|
686 |
+
context_sections = [f"Search Results:\n{search_context}"]
|
687 |
+
|
688 |
+
if attachment_context:
|
689 |
+
context_sections.append(f"Attachment Context:\n{attachment_context}")
|
690 |
+
|
691 |
+
if url_context:
|
692 |
+
context_sections.append(f"URL Content:\n{url_context}")
|
693 |
+
|
694 |
+
full_context = "\n\n".join(context_sections)
|
695 |
|
696 |
answer_prompt = f"""You are a general AI assistant. I will ask you a question.
|
697 |
+
Based on the search results and the context sections below, provide an answer to the question.
|
698 |
+
If the search results don't fully answer the question, you can supplement with information from other context sections or your general knowledge.
|
699 |
Your ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
700 |
Do not add dot if your answer is a number.
|
701 |
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
|
|
|
705 |
|
706 |
Question: {question}
|
707 |
|
708 |
+
{full_context}
|
|
|
|
|
|
|
709 |
|
710 |
Answer:"""
|
711 |
|
|
|
735 |
return "Search completed but no usable results found."
|
736 |
|
737 |
except Exception as e:
|
738 |
+
return f"Search failed: {e}. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question, attachment_context, url_context)
|
739 |
|
740 |
def process_question_with_attachments(self, question_data: dict) -> str:
|
741 |
"""
|
742 |
+
Process a question that may have attachments and URLs.
|
743 |
"""
|
744 |
question_text = question_data.get('question', '')
|
745 |
|
746 |
if self.debug:
|
747 |
+
print(f"Processing question with potential attachments and URLs: {question_text[:100]}...")
|
748 |
|
749 |
try:
|
750 |
# Detect and download attachments
|