Update app.py
Browse filesRemoved thinking tags removal
app.py
CHANGED
@@ -165,14 +165,6 @@ class WebContentFetcher:
|
|
165 |
results.append(result)
|
166 |
time.sleep(1) # Be respectful to servers
|
167 |
return results
|
168 |
-
|
169 |
-
def remove_thinking_tags(text):
|
170 |
-
import re
|
171 |
-
# Remove <think>...</think> blocks
|
172 |
-
cleaned = re.sub(r'<think>.*?</think>', '', text, flags=re.DOTALL)
|
173 |
-
# Remove thinking markers
|
174 |
-
cleaned = re.sub(r'<thinking>.*?</thinking>', '', cleaned, flags=re.DOTALL)
|
175 |
-
return cleaned.strip()
|
176 |
|
177 |
# --- File Download Utility ---
|
178 |
def download_attachment(url: str, temp_dir: str) -> Optional[str]:
|
@@ -374,7 +366,7 @@ class IntelligentAgent:
|
|
374 |
max_tokens=max_tokens,
|
375 |
temperature=temperature
|
376 |
)
|
377 |
-
return
|
378 |
except Exception as chat_error:
|
379 |
if self.debug:
|
380 |
print(f"Chat completion failed: {chat_error}, trying text generation...")
|
@@ -386,7 +378,6 @@ class IntelligentAgent:
|
|
386 |
temperature=temperature,
|
387 |
do_sample=temperature > 0
|
388 |
)
|
389 |
-
response = remove_thinking_tags(response.strip)
|
390 |
return response.strip()
|
391 |
|
392 |
except Exception as e:
|
@@ -655,7 +646,6 @@ Answer:"""
|
|
655 |
|
656 |
try:
|
657 |
response = self._chat_completion(answer_prompt, max_tokens=500, temperature=0.3)
|
658 |
-
response = remove_thinking_tags(response)
|
659 |
return response
|
660 |
|
661 |
except Exception as e:
|
@@ -729,7 +719,6 @@ Answer:"""
|
|
729 |
|
730 |
try:
|
731 |
response = self._chat_completion(answer_prompt, max_tokens=600, temperature=0.3)
|
732 |
-
response = remove_thinking_tags(response)
|
733 |
return response
|
734 |
|
735 |
except Exception as e:
|
@@ -780,15 +769,12 @@ Answer:"""
|
|
780 |
if self.debug:
|
781 |
print("Using search-based approach")
|
782 |
answer = self._answer_with_search(question_text, attachment_context)
|
783 |
-
answer = remove_thinking_tags(answer)
|
784 |
else:
|
785 |
if self.debug:
|
786 |
print("Using LLM-only approach")
|
787 |
answer = self._answer_with_llm(question_text, attachment_context)
|
788 |
print("here")
|
789 |
print(answer)
|
790 |
-
answer = remove_thinking_tags(answer)
|
791 |
-
print(answer)
|
792 |
# Cleanup temporary files
|
793 |
if image_files or audio_files or code_files:
|
794 |
try:
|
@@ -806,7 +792,6 @@ Answer:"""
|
|
806 |
|
807 |
if self.debug:
|
808 |
print(f"Agent returning answer: {answer[:100]}...")
|
809 |
-
answer = remove_thinking_tags(answer)
|
810 |
return answer
|
811 |
|
812 |
def __call__(self, question: str, image_files: List[str] = None, audio_files: List[str] = None) -> str:
|
@@ -834,18 +819,15 @@ Answer:"""
|
|
834 |
if self.debug:
|
835 |
print("Using search-based approach")
|
836 |
answer = self._answer_with_search(question, attachment_context)
|
837 |
-
answer = remove_thinking_tags(answer)
|
838 |
else:
|
839 |
if self.debug:
|
840 |
print("Using LLM-only approach")
|
841 |
answer = self._answer_with_llm(question, attachment_context)
|
842 |
-
answer = remove_thinking_tags(answer)
|
843 |
except Exception as e:
|
844 |
answer = f"Sorry, I encountered an error: {e}"
|
845 |
|
846 |
if self.debug:
|
847 |
print(f"Agent returning answer: {answer[:100]}...")
|
848 |
-
answer = remove_thinking_tags(answer)
|
849 |
return answer
|
850 |
|
851 |
def fetch_questions() -> Tuple[str, Optional[pd.DataFrame]]:
|
@@ -943,7 +925,6 @@ def generate_answers_async(model_name: str = "meta-llama/Llama-3.1-8B-Instruct",
|
|
943 |
try:
|
944 |
# Use the new method that handles attachments
|
945 |
answer = agent.process_question_with_attachments(question_data)
|
946 |
-
answer = remove_thinking_tags(answer)
|
947 |
cached_answers[task_id] = {
|
948 |
"question": question_text,
|
949 |
"answer": answer
|
|
|
165 |
results.append(result)
|
166 |
time.sleep(1) # Be respectful to servers
|
167 |
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
# --- File Download Utility ---
|
170 |
def download_attachment(url: str, temp_dir: str) -> Optional[str]:
|
|
|
366 |
max_tokens=max_tokens,
|
367 |
temperature=temperature
|
368 |
)
|
369 |
+
return response.choices[0].message.content.strip()
|
370 |
except Exception as chat_error:
|
371 |
if self.debug:
|
372 |
print(f"Chat completion failed: {chat_error}, trying text generation...")
|
|
|
378 |
temperature=temperature,
|
379 |
do_sample=temperature > 0
|
380 |
)
|
|
|
381 |
return response.strip()
|
382 |
|
383 |
except Exception as e:
|
|
|
646 |
|
647 |
try:
|
648 |
response = self._chat_completion(answer_prompt, max_tokens=500, temperature=0.3)
|
|
|
649 |
return response
|
650 |
|
651 |
except Exception as e:
|
|
|
719 |
|
720 |
try:
|
721 |
response = self._chat_completion(answer_prompt, max_tokens=600, temperature=0.3)
|
|
|
722 |
return response
|
723 |
|
724 |
except Exception as e:
|
|
|
769 |
if self.debug:
|
770 |
print("Using search-based approach")
|
771 |
answer = self._answer_with_search(question_text, attachment_context)
|
|
|
772 |
else:
|
773 |
if self.debug:
|
774 |
print("Using LLM-only approach")
|
775 |
answer = self._answer_with_llm(question_text, attachment_context)
|
776 |
print("here")
|
777 |
print(answer)
|
|
|
|
|
778 |
# Cleanup temporary files
|
779 |
if image_files or audio_files or code_files:
|
780 |
try:
|
|
|
792 |
|
793 |
if self.debug:
|
794 |
print(f"Agent returning answer: {answer[:100]}...")
|
|
|
795 |
return answer
|
796 |
|
797 |
def __call__(self, question: str, image_files: List[str] = None, audio_files: List[str] = None) -> str:
|
|
|
819 |
if self.debug:
|
820 |
print("Using search-based approach")
|
821 |
answer = self._answer_with_search(question, attachment_context)
|
|
|
822 |
else:
|
823 |
if self.debug:
|
824 |
print("Using LLM-only approach")
|
825 |
answer = self._answer_with_llm(question, attachment_context)
|
|
|
826 |
except Exception as e:
|
827 |
answer = f"Sorry, I encountered an error: {e}"
|
828 |
|
829 |
if self.debug:
|
830 |
print(f"Agent returning answer: {answer[:100]}...")
|
|
|
831 |
return answer
|
832 |
|
833 |
def fetch_questions() -> Tuple[str, Optional[pd.DataFrame]]:
|
|
|
925 |
try:
|
926 |
# Use the new method that handles attachments
|
927 |
answer = agent.process_question_with_attachments(question_data)
|
|
|
928 |
cached_answers[task_id] = {
|
929 |
"question": question_text,
|
930 |
"answer": answer
|