Spaces:
Sleeping
Sleeping
Asadel Ann
commited on
Commit
·
3cccebe
1
Parent(s):
59d11b0
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import pathlib
|
5 |
+
import numpy as np
|
6 |
+
import tensorflow
|
7 |
+
import PIL.Image
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
|
11 |
+
class Model:
|
12 |
+
def __init__(self, model_filepath):
|
13 |
+
self.graph_def = tensorflow.compat.v1.GraphDef()
|
14 |
+
self.graph_def.ParseFromString(model_filepath.read_bytes())
|
15 |
+
|
16 |
+
input_names, self.output_names = self._get_graph_inout(self.graph_def)
|
17 |
+
assert len(input_names) == 1
|
18 |
+
self.input_name = input_names[0]
|
19 |
+
self.input_shape = self._get_input_shape(self.graph_def, self.input_name)
|
20 |
+
|
21 |
+
def predict(self, image_filepath):
|
22 |
+
image = Image.fromarray(image_filepath).resize(self.input_shape)
|
23 |
+
input_array = np.array(image, dtype=np.float32)[np.newaxis, :, :, :]
|
24 |
+
|
25 |
+
with tensorflow.compat.v1.Session() as sess:
|
26 |
+
tensorflow.import_graph_def(self.graph_def, name='')
|
27 |
+
out_tensors = [sess.graph.get_tensor_by_name(o + ':0') for o in self.output_names]
|
28 |
+
outputs = sess.run(out_tensors, {self.input_name + ':0': input_array})
|
29 |
+
|
30 |
+
return {name: outputs[i] for i, name in enumerate(self.output_names)}
|
31 |
+
|
32 |
+
@staticmethod
|
33 |
+
def _get_graph_inout(graph_def):
|
34 |
+
input_names = []
|
35 |
+
inputs_set = set()
|
36 |
+
outputs_set = set()
|
37 |
+
|
38 |
+
for node in graph_def.node:
|
39 |
+
if node.op == 'Placeholder':
|
40 |
+
input_names.append(node.name)
|
41 |
+
|
42 |
+
for i in node.input:
|
43 |
+
inputs_set.add(i.split(':')[0])
|
44 |
+
outputs_set.add(node.name)
|
45 |
+
|
46 |
+
output_names = list(outputs_set - inputs_set)
|
47 |
+
return input_names, output_names
|
48 |
+
|
49 |
+
@staticmethod
|
50 |
+
def _get_input_shape(graph_def, input_name):
|
51 |
+
for node in graph_def.node:
|
52 |
+
if node.name == input_name:
|
53 |
+
return [dim.size for dim in node.attr['shape'].shape.dim][1:3]
|
54 |
+
|
55 |
+
|
56 |
+
def print_outputs(outputs):
|
57 |
+
labelopen = open("labels.txt", 'r')
|
58 |
+
labels = [line.split(',') for line in labelopen.readlines()]
|
59 |
+
outputs = list(outputs.values())[0]
|
60 |
+
return str(labels[outputs[0].argmax()][0])
|
61 |
+
|
62 |
+
|
63 |
+
def main(gambar):
|
64 |
+
m = pathlib.Path("model.pb")
|
65 |
+
#i = pathlib.Path(gambar)
|
66 |
+
|
67 |
+
model = Model(m)
|
68 |
+
outputs = model.predict(gambar)
|
69 |
+
return print_outputs(outputs)
|
70 |
+
demo = gr.Interface(main, gr.Image(shape=(500, 500)), "text")
|
71 |
+
demo.launch()
|