import gradio as gr import pathlib import numpy as np import tensorflow import PIL.Image from PIL import Image class Model: def __init__(self, model_filepath): self.graph_def = tensorflow.compat.v1.GraphDef() self.graph_def.ParseFromString(model_filepath.read_bytes()) input_names, self.output_names = self._get_graph_inout(self.graph_def) assert len(input_names) == 1 self.input_name = input_names[0] self.input_shape = self._get_input_shape(self.graph_def, self.input_name) def predict(self, image_filepath): image = Image.fromarray(image_filepath).resize(self.input_shape) input_array = np.array(image, dtype=np.float32)[np.newaxis, :, :, :] with tensorflow.compat.v1.Session() as sess: tensorflow.import_graph_def(self.graph_def, name='') out_tensors = [sess.graph.get_tensor_by_name(o + ':0') for o in self.output_names] outputs = sess.run(out_tensors, {self.input_name + ':0': input_array}) return {name: outputs[i] for i, name in enumerate(self.output_names)} @staticmethod def _get_graph_inout(graph_def): input_names = [] inputs_set = set() outputs_set = set() for node in graph_def.node: if node.op == 'Placeholder': input_names.append(node.name) for i in node.input: inputs_set.add(i.split(':')[0]) outputs_set.add(node.name) output_names = list(outputs_set - inputs_set) return input_names, output_names @staticmethod def _get_input_shape(graph_def, input_name): for node in graph_def.node: if node.name == input_name: return [dim.size for dim in node.attr['shape'].shape.dim][1:3] def print_outputs(outputs): labelopen = open("labels.txt", 'r') labels = [line.split(',') for line in labelopen.readlines()] outputs = list(outputs.values())[0] return str(labels[outputs[0].argmax()][0]) def main(gambar): m = pathlib.Path("model.pb") #i = pathlib.Path(gambar) model = Model(m) outputs = model.predict(gambar) return print_outputs(outputs) demo = gr.Interface(main, gr.Image(shape=(500, 500)), "text") demo.launch()