Update space
Browse files- app.py +93 -56
- requirements.txt +8 -1
app.py
CHANGED
@@ -1,63 +1,100 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
-
)
|
60 |
|
|
|
|
|
|
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
if __name__ == "__main__":
|
|
|
63 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
import os
|
4 |
+
import groq
|
5 |
+
import warnings
|
6 |
+
import asyncio
|
7 |
+
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
|
8 |
+
from llama_index.llms.groq import Groq
|
9 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
10 |
|
11 |
+
# A warning may appear which doesn't
|
12 |
+
# affect the operation of the code
|
13 |
+
# Suppress it with this code
|
14 |
+
warnings.filterwarnings("ignore", message=".*clean_up_tokenization_spaces.*")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# Global variables
|
17 |
+
index = None
|
18 |
+
query_engine = None
|
19 |
|
20 |
+
# Initialize Groq LLM and ensure it is used
|
21 |
+
llm = Groq(model="mixtral-8x7b-32768")
|
22 |
+
Settings.llm = llm # Ensure Groq is the LLM being used
|
23 |
+
|
24 |
+
# Initialize our chosen embedding model
|
25 |
+
embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
26 |
+
|
27 |
+
# These are our RAG fucntions, called in response to user
|
28 |
+
# initiated events e.g clicking the Load Documents button
|
29 |
+
# on the GUI
|
30 |
+
#
|
31 |
+
def load_documents(file_objs):
|
32 |
+
global index, query_engine
|
33 |
+
try:
|
34 |
+
if not file_objs:
|
35 |
+
return "Error: No files selected."
|
36 |
+
|
37 |
+
documents = []
|
38 |
+
document_names = []
|
39 |
+
for file_obj in file_objs:
|
40 |
+
document_names.append(file_obj.name)
|
41 |
+
loaded_docs = SimpleDirectoryReader(input_files=[file_obj.name]).load_data()
|
42 |
+
documents.extend(loaded_docs)
|
43 |
+
|
44 |
+
if not documents:
|
45 |
+
return "No documents found in the selected files."
|
46 |
+
|
47 |
+
# Create index from documents using Groq LLM and HuggingFace Embeddings
|
48 |
+
index = VectorStoreIndex.from_documents(
|
49 |
+
documents,
|
50 |
+
llm=llm, # Ensure Groq is used here
|
51 |
+
embed_model=embed_model
|
52 |
+
)
|
53 |
+
|
54 |
+
# Create query engine
|
55 |
+
query_engine = index.as_query_engine()
|
56 |
+
|
57 |
+
return f"Successfully loaded {len(documents)} documents from the files: {', '.join(document_names)}"
|
58 |
+
except Exception as e:
|
59 |
+
return f"Error loading documents: {str(e)}"
|
60 |
+
|
61 |
+
async def perform_rag(query, history):
|
62 |
+
global query_engine
|
63 |
+
if query_engine is None:
|
64 |
+
return history + [("Please load documents first.", None)]
|
65 |
+
try:
|
66 |
+
response = await asyncio.to_thread(query_engine.query, query)
|
67 |
+
return history + [(query, str(response))]
|
68 |
+
except Exception as e:
|
69 |
+
return history + [(query, f"Error processing query: {str(e)}")]
|
70 |
+
|
71 |
+
def clear_all():
|
72 |
+
global index, query_engine
|
73 |
+
index = None
|
74 |
+
query_engine = None
|
75 |
+
return None, "", [], "" # Reset file input, load output, chatbot, and message input to default states
|
76 |
+
|
77 |
+
|
78 |
+
# Create the Gradio interface
|
79 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
80 |
+
gr.Markdown("# RAG Multi-file Chat Application")
|
81 |
+
|
82 |
+
with gr.Row():
|
83 |
+
file_input = gr.File(label="Select PDF files to load", file_count="multiple")
|
84 |
+
load_btn = gr.Button("Load Documents")
|
85 |
+
|
86 |
+
load_output = gr.Textbox(label="Load Status")
|
87 |
+
|
88 |
+
msg = gr.Textbox(label="Enter your question")
|
89 |
+
chatbot = gr.Chatbot()
|
90 |
+
clear = gr.Button("Clear")
|
91 |
+
|
92 |
+
# Set up event handlers
|
93 |
+
load_btn.click(load_documents, inputs=[file_input], outputs=[load_output])
|
94 |
+
msg.submit(perform_rag, inputs=[msg, chatbot], outputs=[chatbot])
|
95 |
+
clear.click(clear_all, outputs=[file_input, load_output, chatbot, msg], queue=False)
|
96 |
+
|
97 |
+
# Run the app
|
98 |
if __name__ == "__main__":
|
99 |
+
demo.queue()
|
100 |
demo.launch()
|
requirements.txt
CHANGED
@@ -1 +1,8 @@
|
|
1 |
-
huggingface_hub==0.22.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.22.2
|
2 |
+
gradio
|
3 |
+
groq
|
4 |
+
llama-index-llms-groq
|
5 |
+
llama_index
|
6 |
+
openpyxl
|
7 |
+
llama-index-embeddings-huggingface
|
8 |
+
doc2txt
|