File size: 28,317 Bytes
22f2401 a106fa3 22f2401 a106fa3 22f2401 a106fa3 22f2401 a106fa3 22f2401 a106fa3 22f2401 a106fa3 22f2401 a106fa3 22f2401 a106fa3 22f2401 a106fa3 22f2401 a106fa3 22f2401 a106fa3 22f2401 a106fa3 22f2401 a106fa3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 |
import streamlit as st
import numpy as np
import pandas as pd
from PIL import Image
import cv2
from scipy.ndimage import gaussian_filter
import tensorflow as tf
import matplotlib.pyplot as plt
import io
from matplotlib.figure import Figure
import base64
# ------------------ TC CENTERING UTILS ------------------
def find_tc_center(ir_image, smoothing_sigma=3):
smoothed_image = gaussian_filter(ir_image, sigma=smoothing_sigma)
min_coords = np.unravel_index(np.argmin(smoothed_image), smoothed_image.shape)
return min_coords[::-1] # Return as (x, y)
# Function to generate comparison chart
def generate_comparison_chart(models, mae_values, rmse_values, predicted_values=None):
# Calculate improvement percentages relative to the first model
baseline_mae = mae_values[0]
baseline_rmse = rmse_values[0]
mae_improvements = [0] + [((baseline_mae - val) / baseline_mae) * 100 for val in mae_values[1:]]
rmse_improvements = [0] + [((baseline_rmse - val) / baseline_rmse) * 100 for val in rmse_values[1:]]
# Create figure with subplots (2 or 3 depending on if we have predictions)
if predicted_values:
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(18, 8))
else:
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 8))
# Plot MAE
bars1 = ax1.bar(range(len(models)), mae_values, color='skyblue', edgecolor='black')
ax1.set_title('Mean Absolute Error (MAE)', fontsize=14, fontweight='bold')
ax1.set_ylabel('MAE (knots)', fontsize=12)
ax1.set_xticks(range(len(models)))
ax1.set_xticklabels(models, fontsize=12, rotation=45, ha='right')
ax1.grid(axis='y', linestyle='--', alpha=0.3, color='lightgray')
ax1.set_ylim(0, max(mae_values) * 1.2)
# Plot RMSE
bars2 = ax2.bar(range(len(models)), rmse_values, color='lightcoral', edgecolor='black')
ax2.set_title('Root Mean Square Error (RMSE)', fontsize=14, fontweight='bold')
ax2.set_ylabel('RMSE (knots)', fontsize=12)
ax2.set_xticks(range(len(models)))
ax2.set_xticklabels(models, fontsize=12, rotation=45, ha='right')
ax2.grid(axis='y', linestyle='--', alpha=0.3, color='lightgray')
ax2.set_ylim(0, max(rmse_values) * 1.2)
# Add values on top of the bars for MAE
for i, bar in enumerate(bars1):
height = bar.get_height()
ax1.text(bar.get_x() + bar.get_width()/2., height + 0.3,
f'{height:.2f}', ha='center', va='bottom', fontsize=12)
# Add improvement percentage for all except the first bar
if i > 0:
ax1.text(bar.get_x() + bar.get_width()/2., height/2,
f'β{mae_improvements[i]:.1f}%', ha='center', va='center',
color='blue', fontsize=12, fontweight='bold')
# Add values on top of the bars for RMSE
for i, bar in enumerate(bars2):
height = bar.get_height()
ax2.text(bar.get_x() + bar.get_width()/2., height + 0.3,
f'{height:.2f}', ha='center', va='bottom', fontsize=12)
# Add improvement percentage for all except the first bar
if i > 0:
ax2.text(bar.get_x() + bar.get_width()/2., height/2,
f'β{rmse_improvements[i]:.1f}%', ha='center', va='center',
color='darkred', fontsize=12, fontweight='bold')
# Add horizontal reference lines for best performance
min_mae = min(mae_values)
min_rmse = min(rmse_values)
ax1.axhline(y=min_mae, color='blue', linestyle='--', alpha=0.5)
ax2.axhline(y=min_rmse, color='red', linestyle='--', alpha=0.5)
# Add predictions comparison if provided
if predicted_values:
bars3 = ax3.bar(range(len(models)), predicted_values, color='lightgreen', edgecolor='black')
ax3.set_title('Predicted Vmax', fontsize=14, fontweight='bold')
ax3.set_ylabel('Wind Speed (knots)', fontsize=12)
ax3.set_xticks(range(len(models)))
ax3.set_xticklabels(models, fontsize=12, rotation=45, ha='right')
ax3.grid(axis='y', linestyle='--', alpha=0.3, color='lightgray')
# Add values on top of the bars for predictions
for i, bar in enumerate(bars3):
height = bar.get_height()
ax3.text(bar.get_x() + bar.get_width()/2., height + 0.3,
f'{height:.2f}', ha='center', va='bottom', fontsize=12)
# Add a label at the bottom explaining the reduction percentages
fig.text(0.5, 0.01, 'Note: Reduction percentages (β%) are calculated relative to TCIP-Net (3DCNN)',
ha='center', fontsize=12, fontstyle='italic')
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
return fig
# Function to convert matplotlib figure to Streamlit-compatible image
def fig_to_streamlit(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png', dpi=300, bbox_inches='tight')
buf.seek(0)
return buf
def extract_local_region(ir_image, center, region_size=95):
h, w = ir_image.shape
half_size = region_size // 2
x_min = max(center[0] - half_size, 0)
x_max = min(center[0] + half_size, w)
y_min = max(center[1] - half_size, 0)
y_max = min(center[1] + half_size, h)
region = np.full((region_size, region_size), np.nan)
extracted = ir_image[y_min:y_max, x_min:x_max]
region[:extracted.shape[0], :extracted.shape[1]] = extracted
return region
def generate_hovmoller(X_data):
hovmoller_list = []
for ir_images in X_data: # ir_images: shape (8, 95, 95)
time_steps = ir_images.shape[0]
hovmoller_data = np.zeros((time_steps, 95, 95))
for t in range(time_steps):
tc_center = find_tc_center(ir_images[t])
hovmoller_data[t] = extract_local_region(ir_images[t], tc_center, 95)
hovmoller_list.append(hovmoller_data)
return np.array(hovmoller_list)
def reshape_vmax(vmax_values, chunk_size=8):
trimmed_size = (len(vmax_values) // chunk_size) * chunk_size
vmax_values_trimmed = vmax_values[:trimmed_size]
return vmax_values_trimmed.reshape(-1, chunk_size)
def create_3d_vmax(vmax_2d_array):
# Initialize a 3D array of shape (N, 8, 8) filled with zeros
vmax_3d_array = np.zeros((vmax_2d_array.shape[0], 8, 8))
# Fill the diagonal for each row in the 3D array
for i in range(vmax_2d_array.shape[0]):
np.fill_diagonal(vmax_3d_array[i], vmax_2d_array[i])
# Reshape to (N*8, 8, 8, 1)
vmax_3d_array = vmax_3d_array.reshape(-1, 8, 8, 1)
# Trim last element if needed (original comment, but not implemented)
return vmax_3d_array
def process_lat_values(data):
lat_values = data # Convert to NumPy array
# Trim the array to make its length divisible by 8
trimmed_size = (len(lat_values) // 8) * 8
lat_values_trimmed = lat_values[:trimmed_size]
lat_values_trimmed=np.array(lat_values_trimmed) # Convert to NumPy array
# Reshape into a 2D array (rows of 8 values each) and remove the last row
lat_2d_array = lat_values_trimmed.reshape(-1, 8)
return lat_2d_array
def process_lon_values(data):
lon_values =data # Convert to NumPy array
lon_values = np.array(lon_values) # Convert to NumPy array
# Trim the array to make its length divisible by 8
trimmed_size = (len(lon_values) // 8) * 8
lon_values_trimmed = lon_values[:trimmed_size]
# Reshape into a 2D array (rows of 8 values each) and remove the last row
lon_2d_array = lon_values_trimmed.reshape(-1, 8)
return lon_2d_array
import numpy as np
def calculate_intensity_difference(vmax_2d_array):
"""Calculates intensity difference for each row in Vmax 2D array."""
int_diff = []
for i in vmax_2d_array:
k = abs(i[0] - i[-1]) # Absolute difference between first & last element
i = np.append(i, k) # Append difference as the 9th element
int_diff.append(i)
return np.array(int_diff)
import numpy as np
# Function to process and reshape image data
def process_images(images, batch_size=8, img_size=(95, 95, 1)):
num_images = images.shape[0]
# Trim the dataset to make it divisible by batch_size
trimmed_size = (num_images // batch_size) * batch_size
images_trimmed = images[:trimmed_size]
# Reshape into (x, batch_size, img_size[0], img_size[1], img_size[2])
images_reshaped = images_trimmed.reshape(-1, batch_size, *img_size)
return images_reshaped
import numpy as np
def process_cc_mask(cc_data):
"""Processes CC mask images by trimming and reshaping into (x, 8, 95, 95, 1)."""
num_images = cc_data.shape[0]
batch_size = 8
trimmed_size = (num_images // batch_size) * batch_size # Ensure divisibility by 8
images_trimmed = cc_data[:trimmed_size] # Trim excess images
cc_images = images_trimmed.reshape(-1, batch_size, 95, 95, 1) # Reshape
return cc_images
def extract_convective_cores(ir_data):
"""
Extract Convective Cores (CCs) from IR imagery based on the criteria in the paper.
Args:
ir_data: IR imagery of shape (height, width).
Returns:
cc_mask: Binary mask of CCs (1 for CC, 0 otherwise) of shape (height, width).
"""
height, width,c = ir_data.shape
cc_mask = np.zeros_like(ir_data, dtype=np.float32) # Initialize CC mask
# Define the neighborhood (8-connected)
neighbors = [(-1, -1), (-1, 0), (-1, 1),
(0, -1), (0,0) , (0, 1),
(1, -1), (1, 0), (1, 1)]
for i in range(1, height - 1): # Avoid boundary pixels
for j in range(1, width - 1):
bt_ij = ir_data[i, j]
# Condition 1: BT < 253K
if (bt_ij >= 253).any():
continue
# Condition 2: BT <= BT_n for all neighbors
is_local_min = True
for di, dj in neighbors:
if ir_data[i + di, j + dj] < bt_ij:
is_local_min = False
break
if not is_local_min:
continue
# Condition 3: Gradient condition
numerator1 = (ir_data[i - 1, j] + ir_data[i + 1, j] - 2 * bt_ij) / 3.1
numerator2 = (ir_data[i, j - 1] + ir_data[i, j + 1] - 2 * bt_ij) / 8.0
lhs = numerator1 + numerator2
rhs = (4 / 5.8) * np.exp(0.0826 * (bt_ij - 217))
if lhs > rhs:
cc_mask[i, j] = 1 # Mark as CC
return cc_mask
def compute_convective_core_masks(ir_data):
"""Extracts convective core masks for each IR image."""
cc_mask = []
for i in ir_data:
c = extract_convective_cores(i) # Assuming this function is defined
c = np.array(c)
cc_mask.append(c)
return np.array(cc_mask)
# ------------------ Streamlit UI ------------------
# Configure the page with wide layout and custom title
st.set_page_config(
page_title="Tropical Cyclone U-Net Wind Speed Predictor",
layout="wide",
initial_sidebar_state="expanded"
)
# Main title with emoji and styling
st.markdown("<h1 style='text-align: center;'>π Tropical Cyclone U-Net Wind Speed (Intensity) Predictor</h1><br>", unsafe_allow_html=True)
# Authors section with ORCID links
st.markdown("""
<div style='text-align: center;'>
<p>
<b>By:</b>
<a href="https://orcid.org/0009-0006-0342-429X" target="_blank" style="text-decoration: none">Dharun Krishna K B</a>,
<a href="https://orcid.org/0009-0008-3214-8065" target="_blank" style="text-decoration: none">Nanduri Prudhvi Reddy</a> and
<a href="https://orcid.org/0009-0006-9052-3623" target="_blank" style="text-decoration: none">Ravipati Venkata Madan Mohan</a>; School of Computing.<br>
<b>Under the guidance of:</b>
<a href="https://orcid.org/0000-0003-1969-3559" target="_blank" style="text-decoration: none">Dr. Gowri L</a>,
Assistant Professor, School of Computing.<br>
SASTRA Deemed University, Thanjavur, Tamil Nadu, India.<br><br>
<b>For:</b>
Main project titled <i>"Tropical Cyclone Intensity Prediction Using Deep Learning Models"</i><br>
May 2025
</p>
</div>
""", unsafe_allow_html=True)
# Add a divider before the main content
st.markdown('<div class="divider"></div>', unsafe_allow_html=True)
# Add spacing
st.markdown("<br>", unsafe_allow_html=True)
# App description
st.info('''The *Tropical Cyclone Wind Speed Predictor interface* enables the prediction of maximum sustained wind speeds of tropical cyclones (in knots) using IR and PMW imagery, along with physical attributes from the past 24 hours, while also facilitating comparison between state-of-the-art models and our proposed model.
''')
ir_images = st.file_uploader("Upload 8 IR images", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
pmw_images = st.file_uploader("Upload 8 PMW images", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
if len(ir_images) != 8 or len(pmw_images) != 8:
st.warning("Please upload exactly 8 IR and 8 PMW images.")
else:
st.success("Uploaded 8 IR and 8 PMW images successfully.")
st.header("Input Latitude, Longitude, Vmax")
lat_values, lon_values, vmax_values = [], [], []
import pandas as pd
import numpy as np
# File uploader
csv_file = st.file_uploader("Upload CSV file", type=["csv"])
if csv_file is not None:
try:
df = pd.read_csv(csv_file)
required_columns = {'Latitude', 'Longitude', 'Vmax'}
if required_columns.issubset(df.columns):
lat_values = df['Latitude'].values
lon_values = df['Longitude'].values
vmax_values = df['Vmax'].values
lat_values = np.array(lat_values)
lon_values = np.array(lon_values)
vmax_values = np.array(vmax_values)
st.success("CSV file loaded and processed successfully!")
# Display the dataframe in a scrollable container
st.markdown("<h4>Preview of uploaded data:</h4>", unsafe_allow_html=True)
preview_df = df.head(10).reset_index(drop=True)
preview_df.index += 1 # Shift index to start from 1
st.dataframe(preview_df, height=200)
else:
st.error("CSV file must contain 'Latitude', 'Longitude', and 'Vmax' columns.")
except Exception as e:
st.error(f"Error reading CSV: {e}")
else:
st.warning("Please upload a CSV file.")
# Define data for ablation study
ablation_data = {
"Model": [
"TCIP-Net (3DCNN)",
"TCIP-Net (ST-LSTM)",
"TCIP-Net (ConvLSTM)",
"TCIP-Net (TrajGRU)",
"TCIP-Net (ConvGRU)",
"TCUWSP-Net (Proposed)"
],
"RMSE": [12.63, 12.52, 12.36, 12.24, 11.17, 8.6549],
"MAE": [10.15, 10.12, 9.97, 9.93, 8.92, 6.309]
}
# Improved Prediction Model Section with better UI
st.markdown("<br>", unsafe_allow_html=True)
st.markdown("<h2 style='text-align: center;'>Select Prediction Model</h2>", unsafe_allow_html=True)
# Create columns for better layout
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
model_choice = st.selectbox(
"Choose a model for prediction",
("TCIP-Net ConvGRU", "TCIP-Net ConvLSTM", "TCIP-Net Traj-GRU", "TCIP-Net 3DCNN", "TCIP-Net Spatio-temporal LSTM", "TCUWSP-Net (Proposed Model)"),
index=0
)
# Center-aligned, more attractive submit button
st.markdown("<br>", unsafe_allow_html=True)
col_btn1, col_btn2 = st.columns(2)
with col_btn1:
submit_button = st.button("Predict Intensity", use_container_width=True)
with col_btn2:
all_models_button = st.button("Predict Intensity for All Models", use_container_width=True) # ------------------ Process Single Model Button ------------------
if submit_button:
if len(ir_images) == 8 and len(pmw_images) == 8:
# st.success("Starting preprocessing...")
if model_choice == "TCUWSP-Net (Proposed Model)":
from unetlstm import predict_unetlstm
model_predict_fn = predict_unetlstm
elif model_choice == "TCIP-Net ConvGRU":
from gru_model import predict
model_predict_fn = predict
elif model_choice == "TCIP-Net ConvLSTM":
from convlstm import predict_lstm
model_predict_fn = predict_lstm
elif model_choice == "TCIP-Net 3DCNN":
from cnn3d import predict_3dcnn
model_predict_fn = predict_3dcnn
elif model_choice == "TCIP-Net Traj-GRU":
from trjgru import predict_trajgru
model_predict_fn = predict_trajgru
elif model_choice == "TCIP-Net Spatio-temporal LSTM":
from spaio_temp import predict_stlstm
model_predict_fn = predict_stlstm
ir_arrays = []
pmw_arrays = []
train_vmax_2d = reshape_vmax(np.array(vmax_values))
train_vmax_3d= create_3d_vmax(train_vmax_2d)
lat_processed = process_lat_values(lat_values)
lon_processed = process_lon_values(lon_values)
v_max_diff = calculate_intensity_difference(train_vmax_2d)
for ir in ir_images:
img = Image.open(ir).convert("L")
arr = np.array(img).astype(np.float32)
bt_arr = (arr / 255.0) * (310 - 190) + 190
resized = cv2.resize(bt_arr, (95, 95), interpolation=cv2.INTER_CUBIC)
ir_arrays.append(resized)
for pmw in pmw_images:
img = Image.open(pmw).convert("L")
arr = np.array(img).astype(np.float32) / 255.0
resized = cv2.resize(arr, (95, 95), interpolation=cv2.INTER_CUBIC)
pmw_arrays.append(resized)
ir=np.array(ir_arrays)
pmw=np.array(pmw_arrays)
# Stack into (8, 95, 95)
ir_seq = process_images(ir)
pmw_seq = process_images(pmw)
# For demonstration: create batches
X_train_new = ir_seq.reshape((1, 8, 95, 95)) # Shape: (1, 8, 95, 95)
cc_mask= compute_convective_core_masks(X_train_new)
hov_m_train = generate_hovmoller(X_train_new)
hov_m_train[np.isnan(hov_m_train)] = 0
hov_m_train = hov_m_train.transpose(0, 2, 3, 1)
cc_mask[np.isnan(cc_mask)] = 0
cc_mask=cc_mask.reshape(1, 8, 95, 95, 1)
i_images=cc_mask+ir_seq
reduced_images = np.concatenate([i_images,pmw_seq ], axis=-1)
reduced_images[np.isnan(reduced_images)] = 0
if model_choice == "Unet_LSTM":
import tensorflow as tf
def tf_gradient_magnitude(images):
# Sobel kernels
sobel_x = tf.constant([[1, 0, -1], [2, 0, -2], [1, 0, -1]], dtype=tf.float32)
sobel_y = tf.constant([[1, 2, 1], [0, 0, 0], [-1, -2, -1]], dtype=tf.float32)
sobel_x = tf.reshape(sobel_x, [3, 3, 1, 1])
sobel_y = tf.reshape(sobel_y, [3, 3, 1, 1])
images = tf.convert_to_tensor(images, dtype=tf.float32)
images = tf.expand_dims(images, -1)
gx = tf.nn.conv2d(images, sobel_x, strides=1, padding='SAME')
gy = tf.nn.conv2d(images, sobel_y, strides=1, padding='SAME')
grad_mag = tf.sqrt(tf.square(gx) + tf.square(gy) + 1e-6)
return tf.squeeze(grad_mag, -1).numpy()
def GM_maps_prep(ir):
GM_maps=[]
for i in ir:
GM_map = tf_gradient_magnitude(i)
GM_maps.append(GM_map)
GM_maps=np.array(GM_maps)
return GM_maps
ir_seq=ir_seq.reshape(8, 95, 95, 1)
GM_maps = GM_maps_prep(ir_seq)
print(GM_maps.shape)
GM_maps=GM_maps.reshape(1, 8, 95, 95, 1)
i_images=cc_mask+ir_seq+GM_maps
reduced_images = np.concatenate([i_images,pmw_seq ], axis=-1)
reduced_images[np.isnan(reduced_images)] = 0
print(reduced_images.shape)
y = model_predict_fn(reduced_images, hov_m_train, train_vmax_3d, lat_processed, lon_processed, v_max_diff)
else:
y = model_predict_fn(reduced_images, hov_m_train, train_vmax_3d, lat_processed, lon_processed, v_max_diff)
st.write("Predicted Maximum Sustained Wind Speed [Vmax] (in knots):", y)
else:
st.error("Make sure you uploaded exactly 8 IR and 8 PMW images.")
# ------------------ Process All Models Button ------------------
if all_models_button:
if len(ir_images) == 8 and len(pmw_images) == 8:
st.info("Running predictions for all models... This may take a moment.")
# Store all model names and prediction functions
all_model_names = [
"TCIP-Net (3DCNN)",
"TCIP-Net (ST-LSTM)",
"TCIP-Net (ConvLSTM)",
"TCIP-Net (TrajGRU)",
"TCIP-Net (ConvGRU)",
"TCUWSP-Net (Proposed)"
]
# Process input data once for all models
ir_arrays = []
pmw_arrays = []
train_vmax_2d = reshape_vmax(np.array(vmax_values))
train_vmax_3d = create_3d_vmax(train_vmax_2d)
lat_processed = process_lat_values(lat_values)
lon_processed = process_lon_values(lon_values)
v_max_diff = calculate_intensity_difference(train_vmax_2d)
for ir in ir_images:
img = Image.open(ir).convert("L")
arr = np.array(img).astype(np.float32)
bt_arr = (arr / 255.0) * (310 - 190) + 190
resized = cv2.resize(bt_arr, (95, 95), interpolation=cv2.INTER_CUBIC)
ir_arrays.append(resized)
for pmw in pmw_images:
img = Image.open(pmw).convert("L")
arr = np.array(img).astype(np.float32) / 255.0
resized = cv2.resize(arr, (95, 95), interpolation=cv2.INTER_CUBIC)
pmw_arrays.append(resized)
ir = np.array(ir_arrays)
pmw = np.array(pmw_arrays)
ir_seq = process_images(ir)
pmw_seq = process_images(pmw)
X_train_new = ir_seq.reshape((1, 8, 95, 95))
cc_mask = compute_convective_core_masks(X_train_new)
hov_m_train = generate_hovmoller(X_train_new)
hov_m_train[np.isnan(hov_m_train)] = 0
hov_m_train = hov_m_train.transpose(0, 2, 3, 1)
cc_mask[np.isnan(cc_mask)] = 0
cc_mask = cc_mask.reshape(1, 8, 95, 95, 1)
i_images = cc_mask + ir_seq
reduced_images = np.concatenate([i_images, pmw_seq], axis=-1)
reduced_images[np.isnan(reduced_images)] = 0
# Special processing for Unet_LSTM model if needed
import tensorflow as tf
def tf_gradient_magnitude(images):
# Sobel kernels
sobel_x = tf.constant([[1, 0, -1], [2, 0, -2], [1, 0, -1]], dtype=tf.float32)
sobel_y = tf.constant([[1, 2, 1], [0, 0, 0], [-1, -2, -1]], dtype=tf.float32)
sobel_x = tf.reshape(sobel_x, [3, 3, 1, 1])
sobel_y = tf.reshape(sobel_y, [3, 3, 1, 1])
images = tf.convert_to_tensor(images, dtype=tf.float32)
images = tf.expand_dims(images, -1)
gx = tf.nn.conv2d(images, sobel_x, strides=1, padding='SAME')
gy = tf.nn.conv2d(images, sobel_y, strides=1, padding='SAME')
grad_mag = tf.sqrt(tf.square(gx) + tf.square(gy) + 1e-6)
return tf.squeeze(grad_mag, -1).numpy()
def GM_maps_prep(ir):
GM_maps=[]
for i in ir:
GM_map = tf_gradient_magnitude(i)
GM_maps.append(GM_map)
GM_maps=np.array(GM_maps)
return GM_maps
# For Unet_LSTM model
ir_seq_reshaped = ir_seq.reshape(8, 95, 95, 1)
GM_maps = GM_maps_prep(ir_seq_reshaped)
GM_maps = GM_maps.reshape(1, 8, 95, 95, 1)
i_images_unet = cc_mask + ir_seq_reshaped + GM_maps
reduced_images_unet = np.concatenate([i_images_unet, pmw_seq], axis=-1)
reduced_images_unet[np.isnan(reduced_images_unet)] = 0
# Run predictions for all models
predictions = []
progress_bar = st.progress(0)
# Import all prediction functions
from cnn3d import predict_3dcnn
from spaio_temp import predict_stlstm
from convlstm import predict_lstm
from trjgru import predict_trajgru
from gru_model import predict
from unetlstm import predict_unetlstm
prediction_functions = [
predict_3dcnn, # 3DCNN
predict_stlstm, # ST-LSTM
predict_lstm, # ConvLSTM
predict_trajgru, # TrajGRU
predict, # ConvGRU
predict_unetlstm # TCUWSP-Net
]
# Run predictions
for i, predict_fn in enumerate(prediction_functions):
progress_bar.progress((i) / len(prediction_functions))
# Special case for TCUWSP-Net (Proposed Model)
if i == 5: # TCUWSP-Net index
y = predict_fn(reduced_images_unet, hov_m_train, train_vmax_3d, lat_processed, lon_processed, v_max_diff)
else:
y = predict_fn(reduced_images, hov_m_train, train_vmax_3d, lat_processed, lon_processed, v_max_diff)
predictions.append(float(y))
progress_bar.progress(1.0)
# Create results DataFrame
results_data = {
"Model": all_model_names,
"RMSE": ablation_data["RMSE"],
"MAE": ablation_data["MAE"],
"Predicted Vmax (kt)": predictions
}
results_df = pd.DataFrame(results_data)
# Show DataFrame
st.subheader("Prediction Results from All Models")
st.dataframe(results_df, use_container_width=True)
# Generate and display comparison chart
st.subheader("Visual Comparison of Models")
# Prepare data for visualization
plot_model_names = [name.replace(" ", "\n") for name in all_model_names]
mae_values = results_df["MAE"].tolist()
rmse_values = results_df["RMSE"].tolist()
predicted_values = results_df["Predicted Vmax (kt)"].tolist()
# Generate figure
fig = generate_comparison_chart(plot_model_names, mae_values, rmse_values, predicted_values)
# Display figure
st.pyplot(fig)
# Add some interpretation
st.subheader("Interpretation")
st.write("""
- **RMSE and MAE**: Lower values indicate better model performance.
- **Percentage Improvements**: Show reduction in error compared to the baseline TCIP-Net (3DCNN) model.
- **Predicted Vmax**: The current intensity prediction for the tropical cyclone based on the provided imagery and historical data.
""")
# Highlight best model
best_model_idx = rmse_values.index(min(rmse_values))
best_model = all_model_names[best_model_idx]
best_prediction = predicted_values[best_model_idx]
st.success(f"π Best performing model: **{best_model}** with RMSE: **{min(rmse_values):.2f} kt** and predicted intensity: **{best_prediction:.2f} kt**")
else:
st.error("Make sure you uploaded exactly 8 IR and 8 PMW images.")
|