Qifan Zhang
commited on
Commit
·
3f6f474
1
Parent(s):
b8d9710
update optional models, add text input
Browse files- app.py +34 -14
- utils/models.py +3 -1
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
from typing import Optional
|
| 2 |
|
| 3 |
import gradio as gr
|
|
@@ -7,8 +8,6 @@ from utils.similarity import batch_cos_sim
|
|
| 7 |
|
| 8 |
|
| 9 |
def read_data(filepath: str) -> Optional[pd.DataFrame]:
|
| 10 |
-
if not filepath:
|
| 11 |
-
return None
|
| 12 |
if filepath.endswith('.xlsx'):
|
| 13 |
df = pd.read_csv(filepath)
|
| 14 |
elif filepath.endswith('.csv'):
|
|
@@ -19,35 +18,56 @@ def read_data(filepath: str) -> Optional[pd.DataFrame]:
|
|
| 19 |
|
| 20 |
|
| 21 |
def process(model_name: str,
|
| 22 |
-
|
| 23 |
file=None,
|
| 24 |
):
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
df = batch_cos_sim(df, model_name)
|
| 27 |
path = 'output.csv'
|
| 28 |
df.to_csv(path, index=False, encoding='utf-8-sig')
|
| 29 |
-
return df
|
| 30 |
|
| 31 |
|
| 32 |
model_name_input = gr.components.Textbox(
|
| 33 |
value='paraphrase-multilingual-MiniLM-L12-v2',
|
| 34 |
lines=1,
|
| 35 |
-
type=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
)
|
| 37 |
|
| 38 |
-
|
| 39 |
-
value='prompt,response',
|
| 40 |
lines=10,
|
| 41 |
-
type=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
)
|
| 43 |
|
| 44 |
-
file_output = gr.components.File(label=
|
| 45 |
-
file_count=
|
| 46 |
-
file_types=[
|
| 47 |
|
| 48 |
app = gr.Interface(
|
| 49 |
fn=process,
|
| 50 |
-
inputs=[
|
| 51 |
-
outputs=[
|
| 52 |
)
|
| 53 |
app.launch()
|
|
|
|
| 1 |
+
from io import StringIO
|
| 2 |
from typing import Optional
|
| 3 |
|
| 4 |
import gradio as gr
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
def read_data(filepath: str) -> Optional[pd.DataFrame]:
|
|
|
|
|
|
|
| 11 |
if filepath.endswith('.xlsx'):
|
| 12 |
df = pd.read_csv(filepath)
|
| 13 |
elif filepath.endswith('.csv'):
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
def process(model_name: str,
|
| 21 |
+
text: str,
|
| 22 |
file=None,
|
| 23 |
):
|
| 24 |
+
if file:
|
| 25 |
+
df = read_data(file.name)
|
| 26 |
+
elif text:
|
| 27 |
+
string_io = StringIO(text)
|
| 28 |
+
df = pd.read_csv(string_io)
|
| 29 |
+
else:
|
| 30 |
+
raise Exception('No input provided')
|
| 31 |
df = batch_cos_sim(df, model_name)
|
| 32 |
path = 'output.csv'
|
| 33 |
df.to_csv(path, index=False, encoding='utf-8-sig')
|
| 34 |
+
return str(df), path
|
| 35 |
|
| 36 |
|
| 37 |
model_name_input = gr.components.Textbox(
|
| 38 |
value='paraphrase-multilingual-MiniLM-L12-v2',
|
| 39 |
lines=1,
|
| 40 |
+
type='text'
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
model_name_option = gr.components.Dropdown(
|
| 44 |
+
label='Model Name',
|
| 45 |
+
value='paraphrase-multilingual-MiniLM-L12-v2',
|
| 46 |
+
choices=[
|
| 47 |
+
'paraphrase-multilingual-MiniLM-L12-v2',
|
| 48 |
+
'paraphrase-multilingual-mpnet-base-v2',
|
| 49 |
+
'cyclone/simcse-chinese-roberta-wwm-ext'
|
| 50 |
+
]
|
| 51 |
)
|
| 52 |
|
| 53 |
+
text_input = gr.components.Textbox(
|
| 54 |
+
value='prompt,response\n',
|
| 55 |
lines=10,
|
| 56 |
+
type='text'
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
text_output = gr.components.Textbox(
|
| 60 |
+
label='Output',
|
| 61 |
+
type='text'
|
| 62 |
)
|
| 63 |
|
| 64 |
+
file_output = gr.components.File(label='Output File',
|
| 65 |
+
file_count='single',
|
| 66 |
+
file_types=['', '.', '.csv', '.xls', '.xlsx'])
|
| 67 |
|
| 68 |
app = gr.Interface(
|
| 69 |
fn=process,
|
| 70 |
+
inputs=[model_name_option, text_input, 'file'],
|
| 71 |
+
outputs=[text_output, file_output]
|
| 72 |
)
|
| 73 |
app.launch()
|
utils/models.py
CHANGED
|
@@ -1,13 +1,15 @@
|
|
| 1 |
from functools import lru_cache
|
| 2 |
|
|
|
|
| 3 |
import torch
|
| 4 |
from sentence_transformers import SentenceTransformer
|
| 5 |
-
|
| 6 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 7 |
|
| 8 |
|
| 9 |
class SBert:
|
| 10 |
def __init__(self, path):
|
|
|
|
| 11 |
self.model = SentenceTransformer(path, device=DEVICE)
|
| 12 |
|
| 13 |
@lru_cache(maxsize=10000)
|
|
|
|
| 1 |
from functools import lru_cache
|
| 2 |
|
| 3 |
+
import numpy as np
|
| 4 |
import torch
|
| 5 |
from sentence_transformers import SentenceTransformer
|
| 6 |
+
|
| 7 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 8 |
|
| 9 |
|
| 10 |
class SBert:
|
| 11 |
def __init__(self, path):
|
| 12 |
+
print(f'Loading model from {path} ...')
|
| 13 |
self.model = SentenceTransformer(path, device=DEVICE)
|
| 14 |
|
| 15 |
@lru_cache(maxsize=10000)
|