Spaces:
Sleeping
Sleeping
| import os | |
| import sys | |
| import openai | |
| from langchain.chains import ConversationalRetrievalChain, RetrievalQA | |
| from langchain.chat_models import ChatOpenAI | |
| from langchain.document_loaders import DirectoryLoader, TextLoader | |
| from langchain.embeddings import OpenAIEmbeddings | |
| from langchain.indexes import VectorstoreIndexCreator | |
| from langchain.indexes.vectorstore import VectorStoreIndexWrapper | |
| from langchain.llms import OpenAI | |
| from langchain.text_splitter import CharacterTextSplitter | |
| __import__('pysqlite3') | |
| import sys | |
| sys.modules['sqlite3'] = sys.modules.pop('pysqlite3') | |
| from langchain.vectorstores import Chroma | |
| import gradio as gr | |
| os.environ["OPENAI_API_KEY"] = os.getenv("OPENAPIKEY") | |
| docs = [] | |
| for f in os.listdir("multiple_docs"): | |
| if f.endswith(".pdf"): | |
| pdf_path = "./multiple_docs/" + f | |
| loader = PyPDFLoader(pdf_path) | |
| docs.extend(loader.load()) | |
| elif f.endswith('.docx') or f.endswith('.doc'): | |
| doc_path = "./multiple_docs/" + f | |
| loader = Docx2txtLoader(doc_path) | |
| docs.extend(loader.load()) | |
| elif f.endswith('.txt'): | |
| text_path = "./multiple_docs/" + f | |
| loader = TextLoader(text_path) | |
| docs.extend(loader.load()) | |
| splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10) | |
| docs = splitter.split_documents(docs) | |
| # Convert the document chunks to embedding and save them to the vector store | |
| vectorstore = Chroma.from_documents(docs, embedding=OpenAIEmbeddings(), persist_directory="./data") | |
| vectorstore.persist() | |
| chain = ConversationalRetrievalChain.from_llm( | |
| ChatOpenAI(temperature=0.7, model_name='gpt-3.5-turbo'), | |
| retriever=vectorstore.as_retriever(search_kwargs={'k': 6}), | |
| return_source_documents=True, | |
| verbose=False | |
| ) | |
| chat_history = [] | |
| with gr.Blocks() as demo: | |
| chatbot = gr.Chatbot([("", "Hello, I'm Thierry Decae's chatbot, you can ask me any recruitment related questions such as my previous or most recent experience, where I'm eligible to work, when I can start work, what NLP skills I have, and much more! you can chat with me directly in multiple languages")],avatar_images=["./multiple_docs/Guest.jpg","./multiple_docs/Thierry Picture.jpg"]) | |
| msg = gr.Textbox() | |
| clear = gr.Button("Clear") | |
| chat_history = [] | |
| def user(query, chat_history): | |
| # print("User query:", query) | |
| # print("Chat history:", chat_history) | |
| # Convert chat history to list of tuples | |
| chat_history_tuples = [] | |
| for message in chat_history: | |
| chat_history_tuples.append((message[0], message[1])) | |
| # Get result from QA chain | |
| result = chain({"question": query, "chat_history": chat_history_tuples}) | |
| # Append user message and response to chat history | |
| chat_history.append((query, result["answer"])) | |
| # print("Updated chat history:", chat_history) | |
| return gr.update(value=""), chat_history | |
| msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False) | |
| clear.click(lambda: None, None, chatbot, queue=False) | |
| demo.launch(debug=True) |