Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,14 +5,15 @@ from langchain.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader
|
|
5 |
from langchain.text_splitter import CharacterTextSplitter
|
6 |
from langchain.vectorstores import Chroma
|
7 |
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
8 |
from transformers import pipeline
|
9 |
import gradio as gr
|
10 |
|
11 |
-
#
|
12 |
__import__('pysqlite3')
|
13 |
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
14 |
|
15 |
-
# π Load documents from multiple_docs
|
16 |
docs = []
|
17 |
for f in os.listdir("multiple_docs"):
|
18 |
if f.endswith(".pdf"):
|
@@ -29,11 +30,11 @@ for f in os.listdir("multiple_docs"):
|
|
29 |
splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
|
30 |
docs = splitter.split_documents(docs)
|
31 |
|
32 |
-
#
|
33 |
texts = [doc.page_content for doc in docs]
|
34 |
metadatas = [{"id": i} for i in range(len(texts))]
|
35 |
|
36 |
-
#
|
37 |
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
38 |
|
39 |
# ποΈ Vectorstore
|
@@ -44,22 +45,12 @@ vectorstore = Chroma(
|
|
44 |
vectorstore.add_texts(texts=texts, metadatas=metadatas)
|
45 |
vectorstore.persist()
|
46 |
|
47 |
-
# π€ Load free LLM using pipeline
|
48 |
-
model_name = "google/flan-t5-large" # or flan-t5-base
|
49 |
-
|
|
|
50 |
|
51 |
-
# π
|
52 |
-
class HuggingFaceLLMWrapper:
|
53 |
-
def __init__(self, generator):
|
54 |
-
self.generator = generator
|
55 |
-
|
56 |
-
def __call__(self, prompt, **kwargs):
|
57 |
-
result = self.generator(prompt, max_new_tokens=512, num_return_sequences=1)
|
58 |
-
return result[0]['generated_text']
|
59 |
-
|
60 |
-
llm = HuggingFaceLLMWrapper(generator)
|
61 |
-
|
62 |
-
# π Create Conversational QA chain
|
63 |
chain = ConversationalRetrievalChain.from_llm(
|
64 |
llm,
|
65 |
retriever=vectorstore.as_retriever(search_kwargs={'k': 6}),
|
@@ -67,7 +58,7 @@ chain = ConversationalRetrievalChain.from_llm(
|
|
67 |
verbose=False
|
68 |
)
|
69 |
|
70 |
-
# π¬ Gradio
|
71 |
chat_history = []
|
72 |
|
73 |
with gr.Blocks() as demo:
|
|
|
5 |
from langchain.text_splitter import CharacterTextSplitter
|
6 |
from langchain.vectorstores import Chroma
|
7 |
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
+
from langchain.llms import HuggingFacePipeline
|
9 |
from transformers import pipeline
|
10 |
import gradio as gr
|
11 |
|
12 |
+
# workaround for sqlite in HF spaces
|
13 |
__import__('pysqlite3')
|
14 |
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
15 |
|
16 |
+
# π Load documents from multiple_docs
|
17 |
docs = []
|
18 |
for f in os.listdir("multiple_docs"):
|
19 |
if f.endswith(".pdf"):
|
|
|
30 |
splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
|
31 |
docs = splitter.split_documents(docs)
|
32 |
|
33 |
+
# 𧬠Prepare texts and metadata
|
34 |
texts = [doc.page_content for doc in docs]
|
35 |
metadatas = [{"id": i} for i in range(len(texts))]
|
36 |
|
37 |
+
# π§ Embeddings
|
38 |
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
39 |
|
40 |
# ποΈ Vectorstore
|
|
|
45 |
vectorstore.add_texts(texts=texts, metadatas=metadatas)
|
46 |
vectorstore.persist()
|
47 |
|
48 |
+
# π€ Load free LLM using pipeline + wrap in HuggingFacePipeline
|
49 |
+
model_name = "google/flan-t5-large" # or flan-t5-base for faster
|
50 |
+
hf_pipeline = pipeline("text2text-generation", model=model_name, device=-1) # CPU
|
51 |
+
llm = HuggingFacePipeline(pipeline=hf_pipeline)
|
52 |
|
53 |
+
# π Create conversational chain
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
chain = ConversationalRetrievalChain.from_llm(
|
55 |
llm,
|
56 |
retriever=vectorstore.as_retriever(search_kwargs={'k': 6}),
|
|
|
58 |
verbose=False
|
59 |
)
|
60 |
|
61 |
+
# π¬ Gradio UI
|
62 |
chat_history = []
|
63 |
|
64 |
with gr.Blocks() as demo:
|