Spaces:
Running
Running
import os | |
import fitz # PyMuPDF | |
from paddleocr import PPStructure | |
from pdf2image import convert_from_path | |
import numpy as np | |
import json | |
import re | |
import spacy | |
from spacy.matcher import Matcher | |
from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification | |
import gradio as gr | |
from tqdm.auto import tqdm | |
import os | |
# Ensure Poppler is available | |
os.system("apt-get update -y && apt-get install -y poppler-utils") | |
# --- Initialization --- | |
structure_engine = PPStructure(table=True, ocr=True, layout=True) | |
nlp = spacy.load("en_core_web_sm") | |
matcher = Matcher(nlp.vocab) | |
# Regex & matcher setup | |
date_pattern = r"\d{2}-[A-Za-z]{3}-\d{2}|\d{2}\.\d{2}\.\d{2}" | |
party_pattern = r"M/s [A-Za-z\s&-]+(?:Consortium)?" | |
pattern = [{"LOWER": "claimant"}, {"IS_PUNCT": True, "OP": "?"}, {"ENT_TYPE": "ORG"}] | |
matcher.add("CLAIMANT", [pattern]) | |
# Load Legal-BERT pipelines | |
ner_model = "nlpaueb/legal-bert-base-uncased" | |
token_model = AutoModelForTokenClassification.from_pretrained(ner_model) | |
tokenizer = AutoTokenizer.from_pretrained(ner_model) | |
ner_pipeline = pipeline("ner", model=token_model, tokenizer=tokenizer, aggregation_strategy="simple") | |
clf_pipeline = pipeline("text-classification", model=ner_model) | |
# Helper functions | |
def extract_text_from_pdf(pdf_path): | |
doc = fitz.open(pdf_path) | |
pages = [] | |
for i in range(len(doc)): | |
page = doc[i] | |
pages.append({"page": i + 1, "text": page.get_text("text") or ""}) | |
doc.close() | |
return pages | |
def extract_content_from_images(pdf_path): | |
images = convert_from_path(pdf_path) | |
results = [] | |
for i, img in enumerate(images, start=1): | |
img_np = np.array(img) | |
res = structure_engine(img_np) | |
text_lines, tables = [], [] | |
for block in res: | |
if block['type'] == 'text': | |
text_lines += [line['text'] for line in block['res'] if 'text' in line] | |
elif block['type'] == 'table' and 'html' in block['res']: | |
tables.append(block['res']['html']) | |
results.append({"page": i, "ocr_text": " ".join(text_lines), "tables_html": tables}) | |
return results | |
def extract_metadata(text): | |
meta = {"dates": [], "parties": [], "claimants": [], "tribunals": [], "relationships": [], "clauses": []} | |
# Regex | |
meta['dates'] = re.findall(date_pattern, text) | |
meta['parties'] = re.findall(party_pattern, text) | |
# SpaCy | |
doc = nlp(text) | |
for ent in doc.ents: | |
if ent.label_ == 'ORG' and ent.text not in meta['parties']: | |
meta['parties'].append(ent.text) | |
if ent.label_ == 'GPE': | |
meta['tribunals'].append(ent.text) | |
for match_id, start, end in matcher(doc): | |
meta['claimants'].append(doc[start:end].text) | |
# Legal-BERT NER | |
for ent in ner_pipeline(text): | |
grp = ent['entity_group'] | |
if grp in ('ORG','PARTY') and ent['word'] not in meta['parties']: | |
meta['parties'].append(ent['word']) | |
if grp == 'GPE' and ent['word'] not in meta['tribunals']: | |
meta['tribunals'].append(ent['word']) | |
# Clause classification | |
for sent in text.split('. '): | |
if len(sent) < 10: continue | |
try: | |
res = clf_pipeline(sent)[0] | |
if res['score'] > 0.7: | |
meta['clauses'].append({'type': res['label'], 'text': sent}) | |
except: | |
pass | |
return meta | |
def process_pdf(file_obj): | |
# Save uploaded file | |
pdf_path = file_obj.name | |
# 1. Text | |
text_pages = extract_text_from_pdf(pdf_path) | |
# 2. OCR & tables | |
img_content = extract_content_from_images(pdf_path) | |
# 3. Metadata | |
metadata = [] | |
for page in text_pages: | |
metadata.append({"page": page['page'], "metadata": extract_metadata(page['text'])}) | |
# Combine | |
output = { | |
"text_pages": text_pages, | |
"image_content": img_content, | |
"metadata": metadata | |
} | |
return output | |
# Gradio Interface | |
iface = gr.Interface( | |
fn=process_pdf, | |
inputs=gr.File(label="Upload PDF", file_types=['.pdf']), | |
outputs=gr.JSON(label="Extraction Result"), | |
title="PDF OCR & Metadata Extractor", | |
description="Upload a PDF, wait for processing, and view structured JSON output including text, OCR, tables, and metadata." | |
) | |
if __name__ == '__main__': | |
iface.launch() | |