Spaces:
Runtime error
Runtime error
Upload ExecutableCode.py
Browse files- ExecutableCode.py +64 -0
ExecutableCode.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import spacy
|
| 3 |
+
from spacy.pipeline import EntityRuler
|
| 4 |
+
from spacy.language import Language
|
| 5 |
+
from spacy.matcher import PhraseMatcher
|
| 6 |
+
from spacy.tokens import Span
|
| 7 |
+
|
| 8 |
+
nlp = spacy.load("en_core_web_md")
|
| 9 |
+
|
| 10 |
+
user_input = input(str(""))
|
| 11 |
+
doc1 = nlp(user_input)
|
| 12 |
+
|
| 13 |
+
#print list of entities captured by pertained model
|
| 14 |
+
for ent in doc1.ents:
|
| 15 |
+
print(ent.text, ent.label_)
|
| 16 |
+
|
| 17 |
+
#inspect labels and their meaning
|
| 18 |
+
for ent in doc1.ents:
|
| 19 |
+
print(ent.label_, spacy.explain(ent.label_))
|
| 20 |
+
|
| 21 |
+
#Use PhraseMatcher to find all references of interest
|
| 22 |
+
#Define the different references to Covid
|
| 23 |
+
user_entries = input(str("")) #gradio text box here to enter sample terms
|
| 24 |
+
pattern_list = []
|
| 25 |
+
|
| 26 |
+
for i in user_entries.strip().split():
|
| 27 |
+
pattern_list.append(i)
|
| 28 |
+
|
| 29 |
+
patterns = list(nlp.pipe(pattern_list))
|
| 30 |
+
print("patterns:", patterns)
|
| 31 |
+
|
| 32 |
+
#Instantiate PhraseMatcher
|
| 33 |
+
matcher = PhraseMatcher(nlp.vocab)
|
| 34 |
+
|
| 35 |
+
#Create label for pattern
|
| 36 |
+
user_named = input(str("").strip()) #gradio text box here to enter pattern label
|
| 37 |
+
matcher.add(user_named, patterns)
|
| 38 |
+
|
| 39 |
+
# Define the custom component
|
| 40 |
+
@Language.component("added_component")
|
| 41 |
+
def added_component_function(doc):
|
| 42 |
+
#Apply the matcher to the doc
|
| 43 |
+
matches = matcher(doc)
|
| 44 |
+
#Create a Span for each match and assign the label
|
| 45 |
+
spans = [Span(doc, start, end, label=user_named) for match_id, start, end in matches]
|
| 46 |
+
# Overwrite the doc.ents with the matched spans
|
| 47 |
+
doc.ents = spans
|
| 48 |
+
return doc
|
| 49 |
+
|
| 50 |
+
# Add the component to the pipeline after the "ner" component
|
| 51 |
+
nlp.add_pipe("added_component"), after="ner")
|
| 52 |
+
print(nlp.pipe_names)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
#Verify that your model now detects all specified mentions of Covid on another text
|
| 56 |
+
user_doc = input(str("").strip())
|
| 57 |
+
apply_doc = nlp(user_doc)
|
| 58 |
+
print([(ent.text, ent.label_) for ent in apply_doc.ents])
|
| 59 |
+
|
| 60 |
+
#Count total mentions of label COVID in the 3rd document
|
| 61 |
+
from collections import Counter
|
| 62 |
+
labels = [ent.label_ for ent in apply_doc.ents]
|
| 63 |
+
Counter(labels)
|
| 64 |
+
|