Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,78 +7,56 @@ from spacy.tokens import Span
|
|
| 7 |
|
| 8 |
nlp = spacy.load("en_core_web_md")
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
for
|
| 18 |
-
|
| 19 |
|
| 20 |
-
|
| 21 |
-
for ent in doc1.ents:
|
| 22 |
-
print(ent.label_, spacy.explain(ent.label_))
|
| 23 |
-
|
| 24 |
-
Use PhraseMatcher to find all references of interest
|
| 25 |
-
Define the different references to Covid
|
| 26 |
-
user_entries = input(str("")) #gradio text box here to enter sample terms
|
| 27 |
-
pattern_list = []
|
| 28 |
-
|
| 29 |
-
for i in user_entries.strip().split():
|
| 30 |
-
pattern_list.append(i)
|
| 31 |
-
|
| 32 |
-
patterns = list(nlp.pipe(pattern_list))
|
| 33 |
-
print("patterns:", patterns)
|
| 34 |
-
|
| 35 |
-
#Instantiate PhraseMatcher
|
| 36 |
-
matcher = PhraseMatcher(nlp.vocab)
|
| 37 |
-
|
| 38 |
-
#Create label for pattern
|
| 39 |
-
user_named = input(str("").strip()) #gradio text box here to enter pattern label
|
| 40 |
-
matcher.add(user_named, patterns)
|
| 41 |
-
|
| 42 |
-
# Define the custom component
|
| 43 |
-
@Language.component("covid_component")
|
| 44 |
-
def covid_component_function(doc):
|
| 45 |
-
#Apply the matcher to the doc
|
| 46 |
-
matches = matcher(doc)
|
| 47 |
-
#Create a Span for each match and assign the label
|
| 48 |
-
spans = [Span(doc, start, end, label=user_named) for match_id, start, end in matches]
|
| 49 |
-
# Overwrite the doc.ents with the matched spans
|
| 50 |
-
doc.ents = spans
|
| 51 |
-
return doc
|
| 52 |
-
|
| 53 |
-
# Add the component to the pipeline after the "ner" component
|
| 54 |
-
nlp.add_pipe((user_named + "component"), after="ner")
|
| 55 |
-
print(nlp.pipe_names)
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
#Verify that your model now detects all specified mentions of Covid on another text
|
| 59 |
-
user_doc = input(str("").strip())
|
| 60 |
-
apply_doc = nlp(user_doc)
|
| 61 |
-
print([(ent.text, ent.label_) for ent in apply_doc.ents])
|
| 62 |
-
|
| 63 |
-
#Count total mentions of label COVID in the 3rd document
|
| 64 |
-
from collections import Counter
|
| 65 |
-
labels = [ent.label_ for ent in apply_doc.ents]
|
| 66 |
-
Counter(labels)
|
| 67 |
-
|
| 68 |
-
iface = gr.Interface(
|
| 69 |
-
process_text,
|
| 70 |
-
[gr.inputs.Textbox(lines=10, default="The coronavirus disease 2019 (COVID-19) pandemic is the result of widespread infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).", label="Text to Run through Entity Recognition")],
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
|
|
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
)
|
| 84 |
-
iface.launch()
|
|
|
|
| 7 |
|
| 8 |
nlp = spacy.load("en_core_web_md")
|
| 9 |
|
| 10 |
+
def load(txt1, txt2, txt3, txt4):
|
| 11 |
+
user_input = str(txt1.strip())
|
| 12 |
+
doc1 = nlp(user_input)
|
| 13 |
+
entities = [(ent.text, ent.label_) for ent in doc1.ents]
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
pattern_list = []
|
| 17 |
+
for i in txt2.strip().split():
|
| 18 |
+
pattern_list.append(i)
|
| 19 |
|
| 20 |
+
patterns = list(nlp.pipe(pattern_list))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
matcher = PhraseMatcher(nlp.vocab)
|
| 23 |
+
user_named = str(txt3.strip())
|
| 24 |
+
matcher.add(user_named, patterns)
|
| 25 |
|
| 26 |
+
@Language.component("added_component")
|
| 27 |
+
def component_function(doc):
|
| 28 |
+
matches = matcher(doc)
|
| 29 |
+
spans = [Span(doc, start, end, label=user_named) for match_id, start, end in matches]
|
| 30 |
+
doc.ents = spans
|
| 31 |
+
return doc
|
| 32 |
+
|
| 33 |
+
if "added_component" not in nlp.pipe_names:
|
| 34 |
+
nlp.add_pipe(("added_component"), after="ner")
|
| 35 |
+
|
| 36 |
+
user_input4 = str(txt4.strip())
|
| 37 |
+
apply_doc = nlp(user_input4)
|
| 38 |
+
entities2 = [(ent.text, ent.label_) for ent in apply_doc.ents]
|
| 39 |
+
|
| 40 |
+
from collections import Counter
|
| 41 |
+
labels = [ent.label_ for ent in apply_doc.ents]
|
| 42 |
+
lab_counts = Counter(labels)
|
| 43 |
+
|
| 44 |
+
return(entities, entities2, lab_counts)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
description = "Use this space to produce and test your own customized NER"
|
| 49 |
|
| 50 |
+
|
| 51 |
+
iface = gr.Interface(
|
| 52 |
+
title = "Customized Named Entity Recognition",
|
| 53 |
+
description = description,
|
| 54 |
+
fn = load,
|
| 55 |
+
interpretation = "shap",
|
| 56 |
+
inputs = [gr.inputs.Textbox(lines=10, default="The coronavirus disease 2019 (COVID-19) pandemic is the result of widespread infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).", label="Text to Run through Entity Recognition"), gr.inputs.Textbox(lines=3, default= "Coronavirus, coronavirus, COVID-19, SARS-CoV-2, SARS‐CoV‐2", label="Enter entity references"), gr.inputs.Textbox(lines=1, default="COVID", label="Enter entity label"), gr.inputs.Textbox(lines=10, default="The tissue distribution of the virus-targeted receptor protein, angiotensin converting enzyme II (ACE2), determines which organs will be attacked by SARS‐CoV‐2.", label="Enter new sentence containing named entity")],
|
| 57 |
+
outputs = [gr.outputs.Textbox(type="str", label="Entities recognized before"),
|
| 58 |
+
gr.outputs.Textbox(type="str", label="Entites recognized after"),
|
| 59 |
+
gr.outputs.Textbox(type="str", label="Count of entities captured for new label")],
|
| 60 |
+
theme = "dark"
|
| 61 |
)
|
| 62 |
+
iface.launch()
|