Spaces:
Sleeping
Sleeping
Update app.py
Browse filesThis is 1st version from Cursor
app.py
CHANGED
@@ -6,6 +6,14 @@ from PIL import Image
|
|
6 |
import firebase_admin
|
7 |
from firebase_admin import credentials, auth
|
8 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Load AWS credentials using correct HF Secrets
|
11 |
AWS_ACCESS_KEY = os.getenv("AWS_ACCESS_KEY")
|
@@ -19,23 +27,38 @@ FIREBASE_CONFIG = json.loads(os.getenv("FIREBASE_CONFIG", "{}"))
|
|
19 |
|
20 |
# Initialize Firebase Admin SDK (Prevent multiple initialization)
|
21 |
if not firebase_admin._apps:
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# Initialize AWS Services (S3 & DynamoDB)
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# Food Intellisense List
|
41 |
FOOD_SUGGESTIONS = [
|
@@ -50,6 +73,140 @@ FOOD_SUGGESTIONS = [
|
|
50 |
# Unit options for food weight/volume
|
51 |
UNIT_OPTIONS = ["grams", "ounces", "teaspoons", "tablespoons", "cups", "slices", "pieces"]
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
# Streamlit Layout - Authentication Section
|
54 |
st.sidebar.title("π User Authentication")
|
55 |
auth_option = st.sidebar.radio("Select an option", ["Login", "Sign Up", "Logout"])
|
@@ -59,8 +216,11 @@ if auth_option == "Sign Up":
|
|
59 |
password = st.sidebar.text_input("Password", type="password")
|
60 |
if st.sidebar.button("Sign Up"):
|
61 |
try:
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
64 |
except Exception as e:
|
65 |
st.sidebar.error(f"Error: {e}")
|
66 |
|
@@ -69,10 +229,15 @@ if auth_option == "Login":
|
|
69 |
password = st.sidebar.text_input("Password", type="password")
|
70 |
if st.sidebar.button("Login"):
|
71 |
try:
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
76 |
except Exception as e:
|
77 |
st.sidebar.error(f"Login failed: {e}")
|
78 |
|
@@ -81,56 +246,166 @@ if auth_option == "Logout" and "user_id" in st.session_state:
|
|
81 |
st.sidebar.success("β
Logged out successfully!")
|
82 |
|
83 |
# Ensure user is logged in before uploading
|
84 |
-
if "user_id" not in st.session_state:
|
85 |
st.warning("β οΈ Please log in to upload images.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
st.stop()
|
87 |
|
88 |
-
# Streamlit Layout -
|
89 |
st.title("π½οΈ Food Image Review & Annotation")
|
90 |
-
col1, col2 = st.columns([1, 1])
|
91 |
|
92 |
# Compliance & Disclaimer Section
|
93 |
-
st.
|
94 |
-
st.
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
102 |
|
103 |
# Upload Image
|
104 |
uploaded_file = st.file_uploader("Upload an image of your food", type=["jpg", "png", "jpeg"])
|
105 |
if uploaded_file:
|
106 |
original_img = Image.open(uploaded_file)
|
107 |
st.session_state["original_image"] = original_img
|
108 |
-
st.session_state["tokens"] += 1 # Earn 1 token for upload
|
109 |
|
110 |
# If an image has been uploaded, process and display it
|
111 |
if "original_image" in st.session_state:
|
112 |
original_img = st.session_state["original_image"]
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
return image.resize((new_width, new_height))
|
123 |
-
|
124 |
-
processed_img = resize_image(original_img)
|
125 |
|
|
|
126 |
col1, col2 = st.columns(2)
|
127 |
with col1:
|
128 |
st.subheader("π· Original Image")
|
129 |
-
st.image(original_img, caption=f"Original ({original_img.width}x{original_img.height}
|
130 |
with col2:
|
131 |
st.subheader("πΌοΈ Processed Image")
|
132 |
-
st.image(processed_img, caption=f"Processed ({processed_img.width}x{processed_img.height}
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
# Display earned tokens
|
136 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import firebase_admin
|
7 |
from firebase_admin import credentials, auth
|
8 |
import pandas as pd
|
9 |
+
import uuid
|
10 |
+
from datetime import datetime
|
11 |
+
from io import BytesIO
|
12 |
+
import streamlit_tags as st_tags
|
13 |
+
from dotenv import load_dotenv
|
14 |
+
|
15 |
+
# Load environment variables from .env file if it exists
|
16 |
+
load_dotenv()
|
17 |
|
18 |
# Load AWS credentials using correct HF Secrets
|
19 |
AWS_ACCESS_KEY = os.getenv("AWS_ACCESS_KEY")
|
|
|
27 |
|
28 |
# Initialize Firebase Admin SDK (Prevent multiple initialization)
|
29 |
if not firebase_admin._apps:
|
30 |
+
try:
|
31 |
+
cred = credentials.Certificate(FIREBASE_CONFIG)
|
32 |
+
firebase_admin.initialize_app(cred)
|
33 |
+
except Exception as e:
|
34 |
+
st.error(f"Firebase initialization error: {e}")
|
35 |
+
if st.button("Continue in Demo Mode"):
|
36 |
+
st.session_state["demo_mode"] = True
|
37 |
+
else:
|
38 |
+
st.stop()
|
39 |
|
40 |
# Initialize AWS Services (S3 & DynamoDB)
|
41 |
+
try:
|
42 |
+
s3 = boto3.client(
|
43 |
+
"s3",
|
44 |
+
aws_access_key_id=AWS_ACCESS_KEY,
|
45 |
+
aws_secret_access_key=AWS_SECRET_KEY,
|
46 |
+
region_name=AWS_REGION
|
47 |
+
)
|
48 |
+
|
49 |
+
dynamodb = boto3.resource(
|
50 |
+
"dynamodb",
|
51 |
+
region_name=AWS_REGION,
|
52 |
+
aws_access_key_id=AWS_ACCESS_KEY,
|
53 |
+
aws_secret_access_key=AWS_SECRET_KEY,
|
54 |
+
)
|
55 |
+
metadata_table = dynamodb.Table(DYNAMODB_TABLE)
|
56 |
+
except Exception as e:
|
57 |
+
st.error(f"AWS initialization error: {e}")
|
58 |
+
if st.button("Continue in Demo Mode"):
|
59 |
+
st.session_state["demo_mode"] = True
|
60 |
+
else:
|
61 |
+
st.stop()
|
62 |
|
63 |
# Food Intellisense List
|
64 |
FOOD_SUGGESTIONS = [
|
|
|
73 |
# Unit options for food weight/volume
|
74 |
UNIT_OPTIONS = ["grams", "ounces", "teaspoons", "tablespoons", "cups", "slices", "pieces"]
|
75 |
|
76 |
+
# Cooking methods
|
77 |
+
COOKING_METHODS = [
|
78 |
+
"Baked", "Boiled", "Broiled", "Fried", "Grilled", "Microwaved",
|
79 |
+
"Pan-seared", "Poached", "Raw", "Roasted", "SautΓ©ed", "Steamed",
|
80 |
+
"Stewed", "Stir-fried", "Takeout/Restaurant", "Unknown"
|
81 |
+
]
|
82 |
+
|
83 |
+
# Helper functions
|
84 |
+
def resize_image(image, max_size=512, quality=85):
|
85 |
+
"""
|
86 |
+
Resize image while preserving aspect ratio and reducing file size
|
87 |
+
|
88 |
+
Args:
|
89 |
+
image: PIL Image object
|
90 |
+
max_size: Maximum dimension (width or height)
|
91 |
+
quality: JPEG quality (0-100)
|
92 |
+
|
93 |
+
Returns:
|
94 |
+
Resized PIL Image
|
95 |
+
"""
|
96 |
+
# Calculate new dimensions
|
97 |
+
width, height = image.width, image.height
|
98 |
+
|
99 |
+
# Only resize if the image is larger than max_size
|
100 |
+
if width > max_size or height > max_size:
|
101 |
+
if width > height:
|
102 |
+
new_width = max_size
|
103 |
+
new_height = int(height * (max_size / width))
|
104 |
+
else:
|
105 |
+
new_height = max_size
|
106 |
+
new_width = int(width * (max_size / height))
|
107 |
+
|
108 |
+
# Resize the image
|
109 |
+
resized_img = image.resize((new_width, new_height), Image.LANCZOS)
|
110 |
+
else:
|
111 |
+
# If image is already smaller than max_size, don't resize
|
112 |
+
return image
|
113 |
+
|
114 |
+
# Convert to RGB if image has alpha channel (for JPEG conversion)
|
115 |
+
if resized_img.mode == 'RGBA':
|
116 |
+
resized_img = resized_img.convert('RGB')
|
117 |
+
|
118 |
+
# Compress the image
|
119 |
+
buffer = BytesIO()
|
120 |
+
resized_img.save(buffer, format="JPEG", quality=quality, optimize=True)
|
121 |
+
buffer.seek(0)
|
122 |
+
|
123 |
+
# Return the compressed image
|
124 |
+
return Image.open(buffer)
|
125 |
+
|
126 |
+
def get_image_size_kb(image):
|
127 |
+
"""Get image file size in KB"""
|
128 |
+
buffer = BytesIO()
|
129 |
+
image.save(buffer, format="JPEG")
|
130 |
+
size_bytes = buffer.tell()
|
131 |
+
return size_bytes / 1024 # Convert to KB
|
132 |
+
|
133 |
+
def upload_to_s3(image, user_id):
|
134 |
+
"""Upload image to S3 bucket and return the S3 path"""
|
135 |
+
if st.session_state.get("demo_mode", False):
|
136 |
+
return f"demo/{user_id}/demo_image.jpg"
|
137 |
+
|
138 |
+
try:
|
139 |
+
# Generate a unique ID for the image
|
140 |
+
image_id = str(uuid.uuid4())
|
141 |
+
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
|
142 |
+
s3_path = f"{user_id}/{timestamp}_{image_id}.jpg"
|
143 |
+
|
144 |
+
# Convert PIL image to bytes
|
145 |
+
buffer = BytesIO()
|
146 |
+
image.save(buffer, format="JPEG", quality=85, optimize=True)
|
147 |
+
buffer.seek(0)
|
148 |
+
|
149 |
+
# Upload to S3
|
150 |
+
s3.upload_fileobj(buffer, S3_BUCKET_NAME, s3_path)
|
151 |
+
return s3_path
|
152 |
+
except Exception as e:
|
153 |
+
st.error(f"Failed to upload image: {e}")
|
154 |
+
return None
|
155 |
+
|
156 |
+
def save_metadata(user_id, s3_path, food_name, portion_size, portion_unit, cooking_method, ingredients, tokens_awarded):
|
157 |
+
"""Save metadata to DynamoDB"""
|
158 |
+
if st.session_state.get("demo_mode", False):
|
159 |
+
st.success("Demo mode: Metadata would be saved to DynamoDB")
|
160 |
+
return True
|
161 |
+
|
162 |
+
try:
|
163 |
+
# Generate a unique ID for the database entry
|
164 |
+
image_id = str(uuid.uuid4())
|
165 |
+
timestamp = datetime.now().isoformat()
|
166 |
+
|
167 |
+
# Create item for DynamoDB
|
168 |
+
item = {
|
169 |
+
'image_id': image_id,
|
170 |
+
'user_id': user_id,
|
171 |
+
'upload_timestamp': timestamp,
|
172 |
+
'food_name': food_name,
|
173 |
+
'portion_size': portion_size,
|
174 |
+
'portion_unit': portion_unit,
|
175 |
+
'cooking_method': cooking_method,
|
176 |
+
'ingredients': ingredients,
|
177 |
+
's3_path': s3_path,
|
178 |
+
'tokens_awarded': tokens_awarded
|
179 |
+
}
|
180 |
+
|
181 |
+
# Save to DynamoDB
|
182 |
+
metadata_table.put_item(Item=item)
|
183 |
+
return True
|
184 |
+
except Exception as e:
|
185 |
+
st.error(f"Failed to save metadata: {e}")
|
186 |
+
return False
|
187 |
+
|
188 |
+
def calculate_tokens(image_quality, has_metadata, is_unique_category):
|
189 |
+
"""Calculate tokens based on various factors"""
|
190 |
+
tokens = 1 # Base token for upload
|
191 |
+
|
192 |
+
if image_quality == "high":
|
193 |
+
tokens += 1
|
194 |
+
|
195 |
+
if has_metadata:
|
196 |
+
tokens += 1
|
197 |
+
|
198 |
+
if is_unique_category:
|
199 |
+
tokens += 1
|
200 |
+
|
201 |
+
return tokens
|
202 |
+
|
203 |
+
# Initialize session state for first-time users
|
204 |
+
if "tokens" not in st.session_state:
|
205 |
+
st.session_state["tokens"] = 0
|
206 |
+
|
207 |
+
if "uploads_count" not in st.session_state:
|
208 |
+
st.session_state["uploads_count"] = 0
|
209 |
+
|
210 |
# Streamlit Layout - Authentication Section
|
211 |
st.sidebar.title("π User Authentication")
|
212 |
auth_option = st.sidebar.radio("Select an option", ["Login", "Sign Up", "Logout"])
|
|
|
216 |
password = st.sidebar.text_input("Password", type="password")
|
217 |
if st.sidebar.button("Sign Up"):
|
218 |
try:
|
219 |
+
if st.session_state.get("demo_mode", False):
|
220 |
+
st.sidebar.success("β
Demo mode: User created successfully! Please log in.")
|
221 |
+
else:
|
222 |
+
user = auth.create_user(email=email, password=password)
|
223 |
+
st.sidebar.success("β
User created successfully! Please log in.")
|
224 |
except Exception as e:
|
225 |
st.sidebar.error(f"Error: {e}")
|
226 |
|
|
|
229 |
password = st.sidebar.text_input("Password", type="password")
|
230 |
if st.sidebar.button("Login"):
|
231 |
try:
|
232 |
+
if st.session_state.get("demo_mode", False):
|
233 |
+
st.session_state["user_id"] = "demo_user_123"
|
234 |
+
st.session_state["tokens"] = 0 # Initialize token count
|
235 |
+
st.sidebar.success("β
Demo mode: Logged in successfully!")
|
236 |
+
else:
|
237 |
+
user = auth.get_user_by_email(email)
|
238 |
+
st.session_state["user_id"] = user.uid
|
239 |
+
st.session_state["tokens"] = 0 # Initialize token count
|
240 |
+
st.sidebar.success("β
Logged in successfully!")
|
241 |
except Exception as e:
|
242 |
st.sidebar.error(f"Login failed: {e}")
|
243 |
|
|
|
246 |
st.sidebar.success("β
Logged out successfully!")
|
247 |
|
248 |
# Ensure user is logged in before uploading
|
249 |
+
if "user_id" not in st.session_state and not st.session_state.get("demo_mode", False):
|
250 |
st.warning("β οΈ Please log in to upload images.")
|
251 |
+
|
252 |
+
# Add links to guidelines and terms
|
253 |
+
st.markdown("### π While You're Here")
|
254 |
+
st.markdown("Take a moment to read our guidelines and token system:")
|
255 |
+
col1, col2, col3 = st.columns(3)
|
256 |
+
with col1:
|
257 |
+
if st.button("Participation Guidelines"):
|
258 |
+
with open("PARTICIPATION_GUIDELINES.md", "r") as f:
|
259 |
+
guidelines = f.read()
|
260 |
+
st.markdown(guidelines)
|
261 |
+
with col2:
|
262 |
+
if st.button("Token Rewards"):
|
263 |
+
with open("TOKEN_REWARDS.md", "r") as f:
|
264 |
+
rewards = f.read()
|
265 |
+
st.markdown(rewards)
|
266 |
+
with col3:
|
267 |
+
if st.button("Terms of Service"):
|
268 |
+
with open("TERMS_OF_SERVICE.md", "r") as f:
|
269 |
+
terms = f.read()
|
270 |
+
st.markdown(terms)
|
271 |
+
|
272 |
st.stop()
|
273 |
|
274 |
+
# Streamlit Layout - Main App
|
275 |
st.title("π½οΈ Food Image Review & Annotation")
|
|
|
276 |
|
277 |
# Compliance & Disclaimer Section
|
278 |
+
with st.expander("π Terms & Conditions", expanded=False):
|
279 |
+
st.markdown("### **Terms & Conditions**")
|
280 |
+
st.write(
|
281 |
+
"By uploading an image, you agree to transfer full copyright to the research team for AI training purposes."
|
282 |
+
" You are responsible for ensuring you own the image and it does not violate any copyright laws."
|
283 |
+
" We do not guarantee when tokens will be redeemable. Keep track of your user ID.")
|
284 |
+
terms_accepted = st.checkbox("I agree to the terms and conditions", key="terms_accepted")
|
285 |
+
if not terms_accepted:
|
286 |
+
st.warning("β οΈ You must agree to the terms before proceeding.")
|
287 |
+
st.stop()
|
288 |
|
289 |
# Upload Image
|
290 |
uploaded_file = st.file_uploader("Upload an image of your food", type=["jpg", "png", "jpeg"])
|
291 |
if uploaded_file:
|
292 |
original_img = Image.open(uploaded_file)
|
293 |
st.session_state["original_image"] = original_img
|
|
|
294 |
|
295 |
# If an image has been uploaded, process and display it
|
296 |
if "original_image" in st.session_state:
|
297 |
original_img = st.session_state["original_image"]
|
298 |
|
299 |
+
# Process the image - resize and compress
|
300 |
+
processed_img = resize_image(original_img, max_size=512, quality=85)
|
301 |
+
st.session_state["processed_image"] = processed_img
|
302 |
+
|
303 |
+
# Calculate file sizes
|
304 |
+
original_size = get_image_size_kb(original_img)
|
305 |
+
processed_size = get_image_size_kb(processed_img)
|
306 |
+
size_reduction = ((original_size - processed_size) / original_size) * 100 if original_size > 0 else 0
|
|
|
|
|
|
|
307 |
|
308 |
+
# Display images side by side
|
309 |
col1, col2 = st.columns(2)
|
310 |
with col1:
|
311 |
st.subheader("π· Original Image")
|
312 |
+
st.image(original_img, caption=f"Original ({original_img.width}x{original_img.height} px, {original_size:.1f} KB)", use_container_width=True)
|
313 |
with col2:
|
314 |
st.subheader("πΌοΈ Processed Image")
|
315 |
+
st.image(processed_img, caption=f"Processed ({processed_img.width}x{processed_img.height} px, {processed_size:.1f} KB)", use_container_width=True)
|
316 |
+
|
317 |
+
# Show size reduction
|
318 |
+
if size_reduction > 5: # Only show if there's a meaningful reduction
|
319 |
+
st.success(f"β
Image size reduced by {size_reduction:.1f}% for faster uploads and processing")
|
320 |
+
|
321 |
+
# Food metadata form
|
322 |
+
st.subheader("π² Food Details")
|
323 |
+
|
324 |
+
food_name = st.selectbox("Food Name", options=[""] + FOOD_SUGGESTIONS, index=0)
|
325 |
+
if food_name == "":
|
326 |
+
food_name = st.text_input("Or enter a custom food name")
|
327 |
+
|
328 |
+
col1, col2 = st.columns(2)
|
329 |
+
with col1:
|
330 |
+
portion_size = st.number_input("Portion Size", min_value=0.1, step=0.1)
|
331 |
+
with col2:
|
332 |
+
portion_unit = st.selectbox("Unit", options=UNIT_OPTIONS)
|
333 |
+
|
334 |
+
cooking_method = st.selectbox("Cooking Method", options=[""] + COOKING_METHODS)
|
335 |
+
|
336 |
+
ingredients = st_tags.st_tags(
|
337 |
+
label="Main Ingredients (Add up to 5)",
|
338 |
+
text="Press enter to add",
|
339 |
+
value=[],
|
340 |
+
suggestions=["Salt", "Pepper", "Olive Oil", "Butter", "Garlic", "Onion", "Tomato"],
|
341 |
+
maxtags=5
|
342 |
+
)
|
343 |
+
|
344 |
+
# Submit button
|
345 |
+
if st.button("π€ Submit Food Image"):
|
346 |
+
with st.spinner("Processing your submission..."):
|
347 |
+
# Determine image quality (simplified version)
|
348 |
+
image_quality = "high" if original_img.width >= 1000 and original_img.height >= 1000 else "standard"
|
349 |
+
|
350 |
+
# Check if metadata is complete
|
351 |
+
has_metadata = bool(food_name and portion_size and portion_unit and cooking_method)
|
352 |
+
|
353 |
+
# Check if the food is in a unique category (simplified)
|
354 |
+
is_unique_category = food_name not in ["Pizza", "Burger", "Pasta", "Salad"]
|
355 |
+
|
356 |
+
# Calculate tokens
|
357 |
+
tokens_awarded = calculate_tokens(image_quality, has_metadata, is_unique_category)
|
358 |
+
|
359 |
+
# Upload image to S3
|
360 |
+
s3_path = upload_to_s3(processed_img, st.session_state["user_id"])
|
361 |
+
|
362 |
+
if s3_path:
|
363 |
+
# Save metadata to DynamoDB
|
364 |
+
success = save_metadata(
|
365 |
+
st.session_state["user_id"],
|
366 |
+
s3_path,
|
367 |
+
food_name,
|
368 |
+
float(portion_size),
|
369 |
+
portion_unit,
|
370 |
+
cooking_method,
|
371 |
+
ingredients,
|
372 |
+
tokens_awarded
|
373 |
+
)
|
374 |
+
|
375 |
+
if success:
|
376 |
+
st.session_state["tokens"] += tokens_awarded
|
377 |
+
st.session_state["uploads_count"] += 1
|
378 |
+
st.success(f"β
Food image uploaded successfully! You earned {tokens_awarded} tokens.")
|
379 |
+
|
380 |
+
# Clear the form and image for a new submission
|
381 |
+
st.session_state.pop("original_image", None)
|
382 |
+
st.session_state.pop("processed_image", None)
|
383 |
+
st.experimental_rerun()
|
384 |
+
else:
|
385 |
+
st.error("Failed to save metadata. Please try again.")
|
386 |
+
else:
|
387 |
+
st.error("Failed to upload image. Please try again.")
|
388 |
|
389 |
# Display earned tokens
|
390 |
+
st.sidebar.markdown("---")
|
391 |
+
st.sidebar.subheader("π Your Statistics")
|
392 |
+
st.sidebar.info(f"πͺ Total Tokens: {st.session_state['tokens']}")
|
393 |
+
st.sidebar.info(f"πΈ Total Uploads: {st.session_state.get('uploads_count', 0)}")
|
394 |
+
|
395 |
+
# Help and Documentation Links
|
396 |
+
st.sidebar.markdown("---")
|
397 |
+
st.sidebar.subheader("π Resources")
|
398 |
+
if st.sidebar.button("Participation Guidelines"):
|
399 |
+
with open("PARTICIPATION_GUIDELINES.md", "r") as f:
|
400 |
+
guidelines = f.read()
|
401 |
+
st.sidebar.markdown(guidelines)
|
402 |
+
|
403 |
+
if st.sidebar.button("Token Rewards System"):
|
404 |
+
with open("TOKEN_REWARDS.md", "r") as f:
|
405 |
+
rewards = f.read()
|
406 |
+
st.sidebar.markdown(rewards)
|
407 |
+
|
408 |
+
if st.sidebar.button("Terms of Service"):
|
409 |
+
with open("TERMS_OF_SERVICE.md", "r") as f:
|
410 |
+
terms = f.read()
|
411 |
+
st.sidebar.markdown(terms)
|