import gradio as gr import cv2 import numpy as np from PIL import Image from ultralytics import YOLO import requests import os import time from autogen import AssistantAgent, GroupChat, GroupChatManager import openai # Initialize YOLOv8 for multi-label food detection model = YOLO("yolov8n.pt") # Nano model for speed, fine-tune on food data later # Agent Functions (registered with AutoGen, enhanced debugging) def recognize_foods(image): start = time.time() print(f"Recognize_foods called with image shape: {image.shape if image is not None else 'None'}") # Check if image is valid (not None or empty) if image is None or image.size == 0: print("Warning: Invalid or empty image detected.") return [] # Return empty list for invalid images # Convert to RGB and resize to 640x640 try: pil_image = Image.fromarray(image).convert('RGB').resize((640, 640)) img_np = np.array(pil_image) print(f"Image converted to RGB, shape: {img_np.shape}, min RGB: {img_np.min()}, max RGB: {img_np.max()}") except Exception as e: print(f"Error processing image: {str(e)}") return [] # Return empty list on preprocessing failure # Run YOLOv8 detection results = model(pil_image) foods = [] detected = False for result in results: for cls in result.boxes.cls: label = model.names[int(cls)] if "food" in label.lower() or label in ["waffle fry", "lettuce", "cucumber", "tomato", "broccoli", "carrot", "green bean", "chicken", "turkey", "pasta", "rice", "potato", "bread", "curry"]: # Expanded list conf = result.boxes.conf[result.boxes.cls == cls].item() foods.append((label, conf)) detected = True print(f"Detected: {label} with confidence {conf:.2f}, box: {result.boxes.xyxy[result.boxes.cls == cls]}") if not detected: print("Warning: No food items detected in the image. Check YOLOv8 model or image quality.") print(f"Recognition took {time.time() - start:.2f}s: Found foods {foods}") return list(set(foods)) # Remove duplicates def estimate_sizes(image, foods): start = time.time() print(f"Estimate_sizes called with foods: {foods}") if not foods: print("Warning: No foods to estimate sizes for.") return {} # Resize to match YOLO output for consistency try: img_cv = cv2.cvtColor(image, cv2.COLOR_RGB2BGR).resize((640, 640)) print(f"Image resized to shape: {img_cv.shape}") except Exception as e: print(f"Error resizing image for size estimation: {str(e)}") return {} sizes = {} total_area = img_cv.shape[0] * img_cv.shape[1] # Use YOLO bounding boxes for more accurate sizing (if available) pil_image = Image.fromarray(image).convert('RGB').resize((640, 640)) results = model(pil_image) for result in results: for box, cls in zip(result.boxes.xyxy, result.boxes.cls): label = model.names[int(cls)] if label in [food for food, _ in foods]: box_area = (box[2] - box[0]) * (box[3] - box[1]) # Width * Height # Simple heuristic: scale box area to grams (tune this based on data) grams = min(500, int((box_area / (640 * 640)) * 500)) # Cap at 500g sizes[label] = grams print(f"Estimated size for {label}: {grams}g (via bounding box)") # Fallback: even split if no boxes found if not sizes: for food, _ in foods: area = total_area / len(foods) # Even split for now grams = min(500, int(area / (640 * 640) * 100)) # 100g per ~640k pixels, capped at 500g sizes[food] = grams print(f"Estimated size for {food}: {grams}g (via fallback)") print(f"Size estimation took {time.time() - start:.2f}s: Estimated sizes {sizes}") return sizes def fetch_nutrition(foods_with_sizes, nutritionix_key): start = time.time() print(f"Fetch_nutrition called with foods_with_sizes: {foods_with_sizes}, key: {nutritionix_key[:5]}... (partial)") if not nutritionix_key: print("Warning: No Nutritionix API key provided.") return "Please provide a Nutritionix API key for nutrition data." if not foods_with_sizes: print("Warning: No foods to fetch nutrition for.") return {} url = "https://trackapi.nutritionix.com/v2/natural/nutrients" headers = { "x-app-id": os.getenv("NUTRITIONIX_APP_ID"), # From HF Secrets "x-app-key": nutritionix_key, # User's key "Content-Type": "application/json" } # Build query from foods and sizes query = "\n".join([f"{size}g {food}" for food, size in foods_with_sizes.items()]) print(f"Nutritionix query: {query}") body = {"query": query} try: response = requests.post(url, headers=headers, json=body, timeout=10) if response.status_code != 200: print(f"Nutritionix API error (status {response.status_code}): {response.text}") return f"Nutritionix API error: {response.text}" data = response.json().get("foods", []) nutrition_data = {} for item in data: food_name = item["food_name"] nutrition_data[food_name] = { "calories": item.get("nf_calories", 0), "protein": item.get("nf_protein", 0), "fat": item.get("nf_total_fat", 0), "carbs": item.get("nf_total_carbohydrate", 0) } print(f"Nutrition fetch took {time.time() - start:.2f}s: Fetched nutrition {nutrition_data}") return nutrition_data except requests.Timeout: print("Nutritionix API timed out.") return "Nutritionix API timed out." except Exception as e: print(f"Nutritionix error: {str(e)}") return f"Nutritionix error: {str(e)}" def get_nutrition_advice(nutrition_data, openai_key): start = time.time() print(f"Get_nutrition_advice called with nutrition_data: {nutrition_data}, key: {openai_key[:5]}... (partial)") if not openai_key: print("Warning: No OpenAI API key provided—skipping advice.") return "No OpenAI key provided—skipping advice." if not nutrition_data: print("Warning: No nutrition data to advise on.") return "No nutrition data available for advice." try: openai.api_key = openai_key prompt = "Given this nutritional data, suggest a short dietary tip (max 50 words):\n" + "\n".join( [f"- {food}: {data['calories']} cal, {data['protein']}g protein, {data['fat']}g fat, {data['carbs']}g carbs" for food, data in nutrition_data.items()] ) print(f"OpenAI prompt: {prompt}") response = openai.Completion.create( model="text-davinci-003", prompt=prompt, max_tokens=50, temperature=0.7, timeout=5 ) advice = response.choices[0].text.strip() print(f"Advice took {time.time() - start:.2f}s: {advice}") return advice except Exception as e: print(f"LLM error: {str(e)}") return f"Error with OpenAI key: {str(e)}" # AutoGen Agent Definitions food_recognizer = AssistantAgent( name="FoodRecognizer", system_message="Identify all food items in the image and return a list of (label, probability) pairs. Parse the message for the image data (e.g., 'Process this image: ') and call recognize_foods with it.", function_map={"recognize_foods": recognize_foods} ) size_estimator = AssistantAgent( name="SizeEstimator", system_message="Estimate portion sizes in grams for each recognized food based on the image. Parse the previous message for the list of foods (e.g., '[(\"food1\", 0.85), ...]') and call estimate_sizes with the image and foods from the message history.", function_map={"estimate_sizes": estimate_sizes} ) nutrition_fetcher = AssistantAgent( name="NutritionFetcher", system_message="Fetch nutritional data from the Nutritionix API using the user's key. Parse the previous message for the foods and sizes dictionary (e.g., {'food1': 150, ...}) and the initial message for the Nutritionix key (e.g., 'with Nutritionix key: '), then call fetch_nutrition.", function_map={"fetch_nutrition": fetch_nutrition} ) advice_agent = AssistantAgent( name="NutritionAdvisor", system_message="Provide basic nutrition advice based on the food data using the user's OpenAI key. Parse the previous message for the nutrition data (e.g., {'food1': {'calories': 200, ...}}) and the initial message for the OpenAI key (e.g., 'with OpenAI key: '), then call get_nutrition_advice.", function_map={"get_nutrition_advice": get_nutrition_advice} ) orchestrator = AssistantAgent( name="Orchestrator", system_message="Coordinate the workflow, format the output, and return the final result as text. Parse the initial message for the image, Nutritionix key, and OpenAI key. Start by asking FoodRecognizer to process the image, then SizeEstimator, then NutritionFetcher, then NutritionAdvisor (if OpenAI key provided), and finally format the results into 'Food Analysis:\\n- food1 (size1g, prob1% confidence): calories1 cal, protein1g protein, fat1g fat, carbs1g carbs\\n...' for each food, followed by '\\nNutrition Advice:\\n' and the advice if available.", function_map={} ) # Custom speaker selection function (no LLM needed, updated for AutoGen 0.7.6) def custom_select_speaker(last_speaker, groupchat): """Select the next speaker in a fixed order: FoodRecognizer → SizeEstimator → NutritionFetcher → NutritionAdvisor → Orchestrator.""" if last_speaker is None: return food_recognizer # Return the Agent object, not the name order = [food_recognizer, size_estimator, nutrition_fetcher, advice_agent, orchestrator] current_index = order.index(last_speaker) next_index = (current_index + 1) % len(order) return order[next_index] # Group Chat for Agent Coordination (no LLM for selection, custom speaker selection method) group_chat = GroupChat( agents=[food_recognizer, size_estimator, nutrition_fetcher, advice_agent, orchestrator], messages=[], max_round=5, # Increase for advice agent speaker_selection_method=custom_select_speaker # Use correct parameter for AutoGen 0.7.6 ) manager = GroupChatManager(groupchat=group_chat) # Orchestrator Logic (via AutoGen chat) def orchestrate_workflow(image, nutritionix_key, openai_key=None): start = time.time() print(f"Orchestrate_workflow called with image shape: {image.shape if image is not None else 'None'}, " f"Nutritionix key: {nutritionix_key[:5]}..., OpenAI key: {openai_key[:5]}... (partial)") # Initiate chat with Orchestrator, passing image and keys as message message = f"Process this image: {image} with Nutritionix key: {nutritionix_key}" if openai_key: message += f" and OpenAI key: {openai_key}" print(f"Starting chat with message: {message[:100]}...") # Truncate for readability response = manager.initiate_chat( orchestrator, message=message, max_turns=10 ) # Extract and format the final response from the ChatResult if hasattr(response, 'chat_history') and response.chat_history: # Get the last message from chat history last_message = response.chat_history[-1] result = last_message.get("content", "No output from agents.") print(f"Chat history last message: {result}") else: result = "No output from agents." print("Warning: No chat history in response.") if isinstance(result, dict): result = result.get("text", "No text output from agents.") print(f"Result is dict, extracted text: {result}") # Split result into nutrition and advice if OpenAI key was provided if openai_key and isinstance(result, str) and "\nNutrition Advice:\n" in result: parts = result.split("\nNutrition Advice:\n", 1) nutrition = parts[0] if parts[0] else "No nutrition data." advice = parts[1] if len(parts) > 1 else "No advice available." else: nutrition = result if result != "No output from agents." else "No nutrition data." advice = "No advice available (OpenAI key required)." print(f"Total time: {time.time() - start:.2f}s, Nutrition: {nutrition[:50]}..., Advice: {advice[:50]}...") return nutrition, advice # Gradio Interface interface = gr.Interface( fn=orchestrate_workflow, inputs=[ gr.Image(type="numpy", label="Upload a Food Photo"), gr.Textbox(type="password", label="Your Nutritionix API Key (required)"), gr.Textbox(type="password", label="Your OpenAI API Key (optional for advice)") ], outputs=[ gr.Textbox(label="Nutrition Breakdown"), gr.Textbox(label="Nutrition Advice") ], title="Food Nutrition Analyzer", description="Upload a food photo and provide your Nutritionix API key. Add an OpenAI key for nutrition advice." ) if __name__ == "__main__": interface.launch()