Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
"""
|
2 |
-
Speech Translation Demo with
|
3 |
|
4 |
This demo performs the following:
|
5 |
1. Accepts up to 15 seconds of audio recording from the microphone.
|
@@ -7,10 +7,10 @@ This demo performs the following:
|
|
7 |
3. Splits the transcription into segments and translates each segment
|
8 |
on-the-fly using Facebook’s M2M100 model.
|
9 |
4. Streams the cumulative translation output to the user.
|
10 |
-
5.
|
11 |
-
6.
|
12 |
-
|
13 |
-
|
14 |
Note: True real-time translation (i.e. while speaking) requires a continuous streaming
|
15 |
solution which is not provided by the standard browser microphone input.
|
16 |
"""
|
@@ -25,8 +25,8 @@ import uuid
|
|
25 |
# -----------------------------------------------------------------------------
|
26 |
# Global Model Loading
|
27 |
# -----------------------------------------------------------------------------
|
28 |
-
# Load the Whisper model (using
|
29 |
-
whisper_model = whisper.load_model("base") #
|
30 |
|
31 |
# Load the M2M100 model and tokenizer for translation.
|
32 |
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
|
@@ -45,7 +45,7 @@ LANGUAGES = {
|
|
45 |
}
|
46 |
|
47 |
# -----------------------------------------------------------------------------
|
48 |
-
# Main Processing Function
|
49 |
# -----------------------------------------------------------------------------
|
50 |
def translate_audio(audio, target_language):
|
51 |
"""
|
@@ -64,7 +64,7 @@ def translate_audio(audio, target_language):
|
|
64 |
cumulative_translation = ""
|
65 |
for segment in result.get("segments", []):
|
66 |
segment_text = segment.get("text", "").strip()
|
67 |
-
if segment_text
|
68 |
continue
|
69 |
|
70 |
if source_lang == target_lang_code:
|
@@ -82,15 +82,6 @@ def translate_audio(audio, target_language):
|
|
82 |
cumulative_translation += translated_segment + " "
|
83 |
yield cumulative_translation.strip()
|
84 |
|
85 |
-
# -----------------------------------------------------------------------------
|
86 |
-
# Restart Function
|
87 |
-
# -----------------------------------------------------------------------------
|
88 |
-
def restart_recording():
|
89 |
-
"""
|
90 |
-
Reset the recording section by clearing the audio input and the translation output.
|
91 |
-
"""
|
92 |
-
return None, ""
|
93 |
-
|
94 |
# -----------------------------------------------------------------------------
|
95 |
# TTS Generation Function
|
96 |
# -----------------------------------------------------------------------------
|
@@ -108,19 +99,28 @@ def generate_tts(text, target_language):
|
|
108 |
return filename
|
109 |
|
110 |
# -----------------------------------------------------------------------------
|
111 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
# -----------------------------------------------------------------------------
|
113 |
with gr.Blocks() as demo:
|
114 |
gr.Markdown("# Real-time Speech Translation Demo")
|
115 |
gr.Markdown(
|
116 |
"Speak into the microphone and your speech will be transcribed and translated "
|
117 |
"segment-by-segment. (Recording is limited to 15 seconds.)\n\n"
|
118 |
-
"**Note:**
|
119 |
-
"For a truly real-time experience, a continuous streaming solution would be required."
|
120 |
)
|
121 |
|
|
|
122 |
with gr.Row():
|
123 |
-
# Use 'sources' (list) to specify that the microphone is an input source.
|
124 |
audio_input = gr.Audio(
|
125 |
sources=["microphone"],
|
126 |
type="filepath",
|
@@ -133,35 +133,31 @@ with gr.Blocks() as demo:
|
|
133 |
label="Select Target Language"
|
134 |
)
|
135 |
|
136 |
-
#
|
137 |
-
output_text = gr.Textbox(label="Translated Text", lines=10)
|
138 |
-
|
139 |
with gr.Row():
|
140 |
restart_button = gr.Button("Restart Recording")
|
141 |
-
read_aloud_button = gr.Button("Read Translated Text")
|
142 |
|
143 |
-
#
|
|
|
144 |
tts_audio = gr.Audio(label="Translated Speech", type="filepath")
|
145 |
|
146 |
-
#
|
147 |
audio_input.change(
|
148 |
fn=translate_audio,
|
149 |
inputs=[audio_input, target_lang_dropdown],
|
150 |
-
outputs=output_text
|
|
|
|
|
|
|
|
|
|
|
151 |
)
|
152 |
|
153 |
-
#
|
154 |
restart_button.click(
|
155 |
fn=restart_recording,
|
156 |
inputs=[],
|
157 |
-
outputs=[audio_input, output_text]
|
158 |
-
)
|
159 |
-
|
160 |
-
# When the read aloud button is clicked, generate TTS from the translated text.
|
161 |
-
read_aloud_button.click(
|
162 |
-
fn=generate_tts,
|
163 |
-
inputs=[output_text, target_lang_dropdown],
|
164 |
-
outputs=tts_audio
|
165 |
)
|
166 |
|
167 |
# Launch the Gradio app (suitable for Hugging Face Spaces).
|
|
|
1 |
"""
|
2 |
+
Speech Translation Demo with Automatic TTS and Restart Option
|
3 |
|
4 |
This demo performs the following:
|
5 |
1. Accepts up to 15 seconds of audio recording from the microphone.
|
|
|
7 |
3. Splits the transcription into segments and translates each segment
|
8 |
on-the-fly using Facebook’s M2M100 model.
|
9 |
4. Streams the cumulative translation output to the user.
|
10 |
+
5. Automatically converts the final translated text to speech using gTTS.
|
11 |
+
6. Provides a "Restart Recording" button (located just below the recording section)
|
12 |
+
to reset the audio input, translated text, and TTS output.
|
13 |
+
|
14 |
Note: True real-time translation (i.e. while speaking) requires a continuous streaming
|
15 |
solution which is not provided by the standard browser microphone input.
|
16 |
"""
|
|
|
25 |
# -----------------------------------------------------------------------------
|
26 |
# Global Model Loading
|
27 |
# -----------------------------------------------------------------------------
|
28 |
+
# Load the Whisper model (using "base" for a balance between speed and accuracy).
|
29 |
+
whisper_model = whisper.load_model("base") # Adjust model size as needed
|
30 |
|
31 |
# Load the M2M100 model and tokenizer for translation.
|
32 |
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
|
|
|
45 |
}
|
46 |
|
47 |
# -----------------------------------------------------------------------------
|
48 |
+
# Main Processing Function: Translation (streaming)
|
49 |
# -----------------------------------------------------------------------------
|
50 |
def translate_audio(audio, target_language):
|
51 |
"""
|
|
|
64 |
cumulative_translation = ""
|
65 |
for segment in result.get("segments", []):
|
66 |
segment_text = segment.get("text", "").strip()
|
67 |
+
if not segment_text:
|
68 |
continue
|
69 |
|
70 |
if source_lang == target_lang_code:
|
|
|
82 |
cumulative_translation += translated_segment + " "
|
83 |
yield cumulative_translation.strip()
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
# -----------------------------------------------------------------------------
|
86 |
# TTS Generation Function
|
87 |
# -----------------------------------------------------------------------------
|
|
|
99 |
return filename
|
100 |
|
101 |
# -----------------------------------------------------------------------------
|
102 |
+
# Restart Function
|
103 |
+
# -----------------------------------------------------------------------------
|
104 |
+
def restart_recording():
|
105 |
+
"""
|
106 |
+
Reset the recording section by clearing the audio input, the translation textbox,
|
107 |
+
and the TTS audio output.
|
108 |
+
"""
|
109 |
+
return None, "", None
|
110 |
+
|
111 |
+
# -----------------------------------------------------------------------------
|
112 |
+
# Gradio Interface Definition with Updated Layout and Chained Events
|
113 |
# -----------------------------------------------------------------------------
|
114 |
with gr.Blocks() as demo:
|
115 |
gr.Markdown("# Real-time Speech Translation Demo")
|
116 |
gr.Markdown(
|
117 |
"Speak into the microphone and your speech will be transcribed and translated "
|
118 |
"segment-by-segment. (Recording is limited to 15 seconds.)\n\n"
|
119 |
+
"**Note:** The translation and speech synthesis occur automatically after recording."
|
|
|
120 |
)
|
121 |
|
122 |
+
# Top row: Audio input and target language selection.
|
123 |
with gr.Row():
|
|
|
124 |
audio_input = gr.Audio(
|
125 |
sources=["microphone"],
|
126 |
type="filepath",
|
|
|
133 |
label="Select Target Language"
|
134 |
)
|
135 |
|
136 |
+
# Restart Recording button placed directly below the recording section.
|
|
|
|
|
137 |
with gr.Row():
|
138 |
restart_button = gr.Button("Restart Recording")
|
|
|
139 |
|
140 |
+
# Output components: Translated text and TTS audio.
|
141 |
+
output_text = gr.Textbox(label="Translated Text", lines=10)
|
142 |
tts_audio = gr.Audio(label="Translated Speech", type="filepath")
|
143 |
|
144 |
+
# Chain the audio input change event: first stream translation text, then automatically generate TTS.
|
145 |
audio_input.change(
|
146 |
fn=translate_audio,
|
147 |
inputs=[audio_input, target_lang_dropdown],
|
148 |
+
outputs=output_text,
|
149 |
+
stream=True
|
150 |
+
).then(
|
151 |
+
fn=generate_tts,
|
152 |
+
inputs=[output_text, target_lang_dropdown],
|
153 |
+
outputs=tts_audio
|
154 |
)
|
155 |
|
156 |
+
# Restart button clears the audio input, translation text, and TTS output.
|
157 |
restart_button.click(
|
158 |
fn=restart_recording,
|
159 |
inputs=[],
|
160 |
+
outputs=[audio_input, output_text, tts_audio]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
)
|
162 |
|
163 |
# Launch the Gradio app (suitable for Hugging Face Spaces).
|