Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Real-time Speech Translation Demo
|
3 |
+
|
4 |
+
This demo performs the following:
|
5 |
+
1. Accepts a 15-second audio recording from the microphone.
|
6 |
+
2. Uses OpenAI’s Whisper model to transcribe the speech.
|
7 |
+
3. Splits the transcription into segments (each roughly corresponding to a sentence).
|
8 |
+
4. Translates each segment on-the-fly using Facebook’s M2M100 model (via Hugging Face Transformers).
|
9 |
+
5. Streams the cumulative translation output to the user.
|
10 |
+
|
11 |
+
Make sure to install all dependencies from requirements.txt.
|
12 |
+
"""
|
13 |
+
|
14 |
+
import gradio as gr
|
15 |
+
import whisper
|
16 |
+
import torch
|
17 |
+
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
18 |
+
|
19 |
+
# -----------------------------------------------------------------------------
|
20 |
+
# Global Model Loading
|
21 |
+
# -----------------------------------------------------------------------------
|
22 |
+
# Load the Whisper model (using the "base" model for a balance between speed and accuracy).
|
23 |
+
# Note: Loading models may take a few seconds on startup.
|
24 |
+
whisper_model = whisper.load_model("base") # You can choose a larger model if desired
|
25 |
+
|
26 |
+
# Load the M2M100 model and tokenizer for translation.
|
27 |
+
# The "facebook/m2m100_418M" model supports translation between many languages.
|
28 |
+
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
|
29 |
+
m2m100_model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
|
30 |
+
|
31 |
+
# -----------------------------------------------------------------------------
|
32 |
+
# Define Supported Languages
|
33 |
+
# -----------------------------------------------------------------------------
|
34 |
+
# We define a mapping from display names to language codes used by M2M100.
|
35 |
+
# (For a full list of supported languages see the M2M100 docs.)
|
36 |
+
LANGUAGES = {
|
37 |
+
"English": "en",
|
38 |
+
"Spanish": "es",
|
39 |
+
"French": "fr",
|
40 |
+
"German": "de",
|
41 |
+
"Chinese": "zh"
|
42 |
+
}
|
43 |
+
|
44 |
+
# -----------------------------------------------------------------------------
|
45 |
+
# Main Processing Function
|
46 |
+
# -----------------------------------------------------------------------------
|
47 |
+
def translate_audio(audio, target_language):
|
48 |
+
"""
|
49 |
+
Process the input audio, transcribe it using Whisper, and translate each segment
|
50 |
+
to the chosen target language. Yields a cumulative translation string for streaming.
|
51 |
+
|
52 |
+
Parameters:
|
53 |
+
audio (str): Path to the recorded audio file.
|
54 |
+
target_language (str): Display name of the target language (e.g., "English").
|
55 |
+
|
56 |
+
Yields:
|
57 |
+
str: The cumulative translated text after processing each segment.
|
58 |
+
"""
|
59 |
+
if audio is None:
|
60 |
+
yield "No audio provided."
|
61 |
+
return
|
62 |
+
|
63 |
+
# Transcribe the audio file using Whisper.
|
64 |
+
# Using fp16=False to ensure compatibility on CPUs.
|
65 |
+
result = whisper_model.transcribe(audio, fp16=False)
|
66 |
+
|
67 |
+
# Extract the detected source language from the transcription result.
|
68 |
+
# (Whisper returns a language code, for example "en" for English.)
|
69 |
+
source_lang = result.get("language", "en")
|
70 |
+
|
71 |
+
# Get the target language code from our mapping; default to English if not found.
|
72 |
+
target_lang_code = LANGUAGES.get(target_language, "en")
|
73 |
+
|
74 |
+
cumulative_translation = ""
|
75 |
+
|
76 |
+
# Iterate over each segment from the transcription.
|
77 |
+
# Each segment is a dict with keys such as "start", "end", and "text".
|
78 |
+
for segment in result.get("segments", []):
|
79 |
+
# Clean up the segment text.
|
80 |
+
segment_text = segment.get("text", "").strip()
|
81 |
+
if segment_text == "":
|
82 |
+
continue
|
83 |
+
|
84 |
+
# If the source and target languages are the same, no translation is needed.
|
85 |
+
if source_lang == target_lang_code:
|
86 |
+
translated_segment = segment_text
|
87 |
+
else:
|
88 |
+
# Set the tokenizer's source language for proper translation.
|
89 |
+
tokenizer.src_lang = source_lang
|
90 |
+
# Tokenize the segment text.
|
91 |
+
encoded = tokenizer(segment_text, return_tensors="pt")
|
92 |
+
# Generate translation tokens.
|
93 |
+
# The 'forced_bos_token_id' parameter forces the model to generate text in the target language.
|
94 |
+
generated_tokens = m2m100_model.generate(
|
95 |
+
**encoded,
|
96 |
+
forced_bos_token_id=tokenizer.get_lang_id(target_lang_code)
|
97 |
+
)
|
98 |
+
# Decode the tokens to obtain the translated text.
|
99 |
+
translated_segment = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
100 |
+
|
101 |
+
# Append the new translation segment to the cumulative output.
|
102 |
+
cumulative_translation += translated_segment + " "
|
103 |
+
|
104 |
+
# Yield the updated cumulative translation to simulate streaming output.
|
105 |
+
yield cumulative_translation.strip()
|
106 |
+
|
107 |
+
# -----------------------------------------------------------------------------
|
108 |
+
# Gradio Interface Definition
|
109 |
+
# -----------------------------------------------------------------------------
|
110 |
+
with gr.Blocks() as demo:
|
111 |
+
gr.Markdown("# Real-time Speech Translation Demo")
|
112 |
+
gr.Markdown(
|
113 |
+
"Speak into the microphone and your speech will be transcribed and translated "
|
114 |
+
"segment-by-segment. (Recording is limited to 15 seconds.)"
|
115 |
+
)
|
116 |
+
|
117 |
+
with gr.Row():
|
118 |
+
# Audio input: records from the microphone.
|
119 |
+
audio_input = gr.Audio(
|
120 |
+
source="microphone",
|
121 |
+
type="filepath",
|
122 |
+
label="Record your speech (max 15 seconds)",
|
123 |
+
elem_id="audio_input"
|
124 |
+
)
|
125 |
+
# Dropdown to select the target language.
|
126 |
+
target_lang_dropdown = gr.Dropdown(
|
127 |
+
choices=list(LANGUAGES.keys()),
|
128 |
+
value="English",
|
129 |
+
label="Select Target Language"
|
130 |
+
)
|
131 |
+
|
132 |
+
# Output textbox for displaying the (streaming) translation.
|
133 |
+
output_text = gr.Textbox(label="Translated Text", lines=10)
|
134 |
+
|
135 |
+
# Connect the audio input and dropdown to our translation function.
|
136 |
+
# Since translate_audio is a generator (it yields partial results), Gradio will stream the output.
|
137 |
+
audio_input.change(
|
138 |
+
fn=translate_audio,
|
139 |
+
inputs=[audio_input, target_lang_dropdown],
|
140 |
+
outputs=output_text
|
141 |
+
)
|
142 |
+
|
143 |
+
# Launch the Gradio app (suitable for Hugging Face Spaces).
|
144 |
+
demo.launch()
|