Spaces:
Running
Running
File size: 30,492 Bytes
9b0a8c5 1cfc9e8 9b0a8c5 1cfc9e8 9b0a8c5 1cfc9e8 9b0a8c5 1cfc9e8 9b0a8c5 1cfc9e8 9b0a8c5 3bc3503 1cfc9e8 9b0a8c5 1cfc9e8 9b0a8c5 1cfc9e8 9b0a8c5 1cfc9e8 9b0a8c5 3bc3503 9b0a8c5 1cfc9e8 9b0a8c5 1cfc9e8 9b0a8c5 1cfc9e8 9b0a8c5 1cfc9e8 9b0a8c5 1cfc9e8 9b0a8c5 1cfc9e8 9b0a8c5 1cfc9e8 9b0a8c5 1cfc9e8 9b0a8c5 1cfc9e8 9b0a8c5 3bc3503 1cfc9e8 9b0a8c5 1cfc9e8 9b0a8c5 3bc3503 9b0a8c5 3bc3503 9b0a8c5 3bc3503 9b0a8c5 3bc3503 9b0a8c5 3bc3503 9b0a8c5 3bc3503 9b0a8c5 3bc3503 9b0a8c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 |
import os.path
import datetime
import io
import PIL
import requests
from typing import Literal
from datasets import load_dataset, concatenate_datasets, Image
from data.lang2eng_map import lang2eng_mapping
from data.words_map import words_mapping
import gradio as gr
import bcrypt
from config.settings import HF_API_TOKEN
from huggingface_hub import snapshot_download
# from .blur import blur_faces, detect_faces
from retinaface import RetinaFace
from gradio_modal import Modal
import numpy as np
import cv2
import time
import re
import os
import glob
from pyuca import Collator
from pillow_heif import register_heif_opener
register_heif_opener()
import spacy_udpipe
# ja_nlp = spacy.load("ja_core_news_sm")
# zh_nlp = spacy.load("zh_core_web_sm")
# import ja_core_news_sm
# import zh_core_web_sm
import spacy_thai
ja_nlp = spacy_udpipe.load("ja")
zh_nlp = spacy_udpipe.load("zh")
th_nlp = spacy_thai.load()
def sort_with_pyuca(strings):
collator = Collator()
return sorted(strings, key=collator.sort_key)
def update_image(image_url):
try:
headers = {"User-Agent": "Mozilla/5.0"}
response = requests.get(image_url, headers=headers, timeout=10)
response.raise_for_status()
content_type = response.headers.get("Content-Type", "")
if "image" not in content_type:
gr.Error(f"β οΈ URL does not point to a valid image.", duration=5)
return "Error: URL does not point to a valid image."
img = PIL.Image.open(io.BytesIO(response.content))
img = img.convert("RGB")
return img, Modal(visible=False)
except Exception as e:
# print(f"Error: {str(e)}")
if image_url is None or image_url == "":
return gr.Image(label="Image", elem_id="image_inp"), Modal(visible=False)
else:
return gr.Image(label="Image", value=None, elem_id="image_inp"), Modal(visible=True)
def update_timestamp():
return gr.Textbox(datetime.datetime.now().timestamp(), label="Timestamp", visible=False) # FIXME visible=False)
def clear_data(message: Literal["submit", "remove"] | None = None):
if message == "submit":
gr.Info("If you logged in, you will soon see it at the bottom of the page, where you can edit it or delete it", title="Thank you for submitting your data! π", duration=5)
elif message == "remove":
gr.Info("", title="Your data has been deleted! ποΈ", duration=5)
return (None, None, None, None, None, gr.update(value=None),
gr.update(value=[]), gr.update(value=[]), gr.update(value=[]),
gr.update(value=[]), gr.update(value=[]))
def exit():
return (None, None, None, gr.Dataset(samples=[]), gr.Markdown("**Loading your data, please wait ...**"),
gr.update(value=None), gr.update(value=None), [None, None, "", ""], gr.update(value=None),
gr.update(value=None), gr.update(value=None),
gr.update(value=None), gr.update(value=None), gr.update(value=None),
gr.update(value=None), gr.update(value=None))
def validate_metadata(country, language):
# Perform your validation logic here
if country is None or language is None:
return gr.Button("Proceed", interactive=False)
return gr.Button("Proceed", interactive=True)
def validate_inputs(image, ori_img, concept): # is_blurred
# Perform your validation logic here
# import pdb; pdb.set_trace()
if image is None:
return gr.Button("Submit", variant="primary", interactive=False), None, None, # False
if concept is None:
raise gr.Error("β οΈ Please select the main concept first. Click the β on the image uploader to reset the image.", duration=10)
return gr.Button("Submit", variant="primary", interactive=False), None, None, # False
# Define maximum dimensions
MAX_WIDTH = 1024
MAX_HEIGHT = 1024
# Get current dimensions
height, width = image.shape[:2]
# # Check if resizing is needed
# NOTE: for now, let's keep the full image resolution
# if width > MAX_WIDTH or height > MAX_HEIGHT:
# # Calculate scaling factor
# scale = min(MAX_WIDTH/width, MAX_HEIGHT/height)
# # Calculate new dimensions
# new_width = int(width * scale)
# new_height = int(height * scale)
# # Resize image while maintaining aspect ratio
# result_image = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
# else:
# result_image = image
result_image = image
if ori_img is None:
# If the original image is None, set it to the resized image
ori_img = gr.State(result_image.copy())
return gr.Button("Submit", variant="primary", interactive=True), result_image, ori_img # is_blurred
def count_words(caption, language):
match language:
case "Japanese":
doc = ja_nlp(caption)
tokens = [tok.text for tok in doc if not tok.is_punct]
num_words = len(tokens)
case "Chinese":
doc = zh_nlp(caption)
tokens = [tok.text for tok in doc if not tok.is_punct]
num_words = len(tokens)
case "Thai":
num_words = len(th_nlp(caption))
case _:
num_words = len(caption.split())
return num_words
# return gr.Markdown(f"Number of words: {num_words}")
def add_prefix(example, column_name, prefix):
example[column_name] = (f"{prefix}/" + example[column_name])
return example
def update_user_data(username, password, country, language_choice, HF_DATASET_NAME, local_ds_directory_path):
datasets_list = []
# Try loading local dataset
try:
snapshot_download(
repo_id=HF_DATASET_NAME,
repo_type="dataset",
local_dir=local_ds_directory_path, # Your target local directory
allow_patterns=f"{country}/{language_choice}/{username}/*", # f"**/{username}/*"
token=HF_API_TOKEN
)
except Exception as e:
print(f"Snapshot download error: {e}")
# import pdb; pdb.set_trace()
if has_user_json(username, country, language_choice, local_ds_directory_path):
try:
# ds_local = load_dataset(local_ds_directory_path, data_files=f'logged_in_users/**/{username}/**/*.json') # This does not filter by country and language
ds_local = load_dataset(local_ds_directory_path, data_files=f'logged_in_users/{country}/{language_choice}/{username}/**/*.json')
ds_local = ds_local.remove_columns("image_file")
ds_local = ds_local.rename_column("image", "image_file")
ds_local = ds_local.map(add_prefix, fn_kwargs={"column_name": "image_file", "prefix": local_ds_directory_path})
ds_local = ds_local.cast_column("image_file", Image())
datasets_list.append(list(ds_local.values())[0])
except Exception as e:
print(f"Local dataset load error: {e}")
# # Try loading hub dataset
# try:
# ds_hub = load_dataset(HF_DATASET_NAME, data_files=f'**/{username}/**/*.json', token=HF_API_TOKEN)
# ds_hub = ds_hub.cast_column("image_file", Image())
# datasets_list.append(list(ds_hub.values())[0])
# except Exception as e:
# print(f"Hub dataset load error: {e}")
# Handle all empty
if not datasets_list:
if username: # User is logged in but has no data
return gr.Dataset(samples=[]), gr.Markdown("<p style='color: red;'>No data available for this user. Please upload an image.</p>")
else: # No user logged in
return gr.Dataset(samples=[]), gr.Markdown("")
dataset = concatenate_datasets(datasets_list)
# TODO: we should link username with password and language and country, otherwise there will be an error when loading with different language and clicking on the example
if username and password:
user_dataset = dataset.filter(lambda x: x['username'] == username and is_password_correct(x['password'], password))
user_dataset = user_dataset.sort('timestamp', reverse=True)
# Show only unique entries (most recent)
user_ids = set()
samples = []
for d in user_dataset:
if d['id'] in user_ids:
continue
user_ids.add(d['id'])
if d['excluded']:
continue
# Get additional concepts by category or empty dict if not present
# additional_concepts_by_category = {
# "category1": d.get("category_1_concepts", []),
# "category2": d.get("category_2_concepts", []),
# "category3": d.get("category_3_concepts", []),
# "category4": d.get("category_4_concepts", []),
# "category5": d.get("category_5_concepts", [])
# }
additional_concepts_by_category = [
d.get("category_1_concepts", [""]),
d.get("category_2_concepts", [""]),
d.get("category_3_concepts", [""]),
d.get("category_4_concepts", [""]),
d.get("category_5_concepts", [""])
]
samples.append(
[
d['image_file'], d['image_url'], d['caption'] or "", d['country'],
d['language'], d['category'], d['concept'], additional_concepts_by_category, d['id']] # d['is_blurred']
)
# return gr.Dataset(samples=samples), None
# βββββββββββββββββββββββββββββββββββββββββββββββββββ
# Clean up the βAdditional Conceptsβ column (index 7)
cleaned = []
for row in samples:
# row is a list, index 7 holds the list-of-lists
ac = row[7]
# flatten & drop empty strings
vals = []
for sub in ac:
if isinstance(sub, list):
for v in sub:
v = v.strip()
if v:
vals.append(v)
# now vals contains every non-empty string from every sub-list
# e.g. ['Arquitectura colonial espaΓ±ola', 'AΓ±o Nuevo', 'Bata',
# 'Aborrajado', 'Ajiaco', 'Abanico/ventilador']
# make a copy and replace only that field
row_copy = list(row)
row_copy[7] = ", ".join(vals)
cleaned.append(row_copy)
return gr.Dataset(samples=cleaned), None
else:
# TODO: should we show the entire dataset instead? What about "other data" tab?
return gr.Dataset(samples=[]), None
def update_language(local_storage, metadata_dict, concepts_dict):
country, language, email, password, = local_storage
# my_translator = GoogleTranslator(source='english', target=metadata_dict[country][language])
categories = concepts_dict[country][lang2eng_mapping.get(language, language)]
categories_list = sort_with_pyuca(list(categories.keys()))
if language in words_mapping:
categories_keys_translated = [words_mapping[language].get(cat, cat) for cat in categories_list]
else:
categories_keys_translated = categories_list
# Get the 5 categories in alphabetical order
# Create translated labels for the 5 categories
translated_categories = []
for cat in categories_list:
if language in words_mapping:
translated_cat = words_mapping[language].get(cat, cat)
else:
translated_cat = cat
translated_categories.append(translated_cat)
# Load all possible concepts
concepts_list = []
# cats = [] # FIXME: Assumes concepts are unique across all categories
for cat in concepts_dict[country][language]:
for concept in concepts_dict[country][language][cat]:
# cats.append(cat)
concepts_list.append(concept)
concepts_list = sort_with_pyuca(concepts_list)
fn = metadata_dict[country][language]["Task"]
if os.path.exists(fn):
with open(fn, "r", encoding="utf-8") as f:
TASK_TEXT = f.read()
else:
fn = metadata_dict["USA"]["English"]["Task"]
with open(fn, "r", encoding="utf-8") as f:
TASK_TEXT = f.read()
fn = metadata_dict[country][language]["Instructions"]
if os.path.exists(fn):
with open(metadata_dict[country][language]["Instructions"], "r", encoding="utf-8") as f:
INST_TEXT = f.read()
else:
fn = metadata_dict["USA"]["English"]["Instructions"]
with open(fn, "r", encoding="utf-8") as f:
INST_TEXT = f.read()
return (
gr.update(label=metadata_dict[country][language]["Country"], value=country),
gr.update(label=metadata_dict[country][language]["Language"], value=language),
gr.update(label=metadata_dict[country][language]["Email"], value=email),
gr.update(label=metadata_dict[country][language]["Password"], value=password),
gr.update(choices=categories_keys_translated, interactive=True, label=metadata_dict[country][language]["Category"], allow_custom_value=False, elem_id="category_btn"),
gr.update(choices=concepts_list, interactive=True, label=metadata_dict[country][language]["Concept"], allow_custom_value=True, elem_id="concept_btn"),
gr.update(label=metadata_dict[country][language]["Image"]),
gr.update(label=metadata_dict[country][language]["Image_URL"]),
gr.update(label=metadata_dict[country][language]["Description"]),
gr.Markdown(TASK_TEXT),
gr.Markdown(INST_TEXT),
gr.update(value=metadata_dict[country][language]["Instructs_btn"]),
gr.update(value=metadata_dict[country][language]["Clear_btn"]),
gr.update(value=metadata_dict[country][language]["Submit_btn"]),
gr.Markdown(metadata_dict[country][language]["Saving_text"]),
gr.Markdown(metadata_dict[country][language]["Saved_text"]),
gr.update(label=metadata_dict[country][language]["Timestamp"]),
gr.update(value=metadata_dict[country][language]["Exit_btn"]),
gr.Markdown(metadata_dict[country][language]["Browse_text"]),
gr.Markdown(metadata_dict[country][language]["Loading_msg"]),
# gr.update(choices=categories_keys_translated, interactive=True, label=metadata_dict[country][language].get("Add_Category","Additional Categories (Optional)"), allow_custom_value=False, elem_id="additional_category_btn"),
# gr.update(choices=[], interactive=True, label=metadata_dict[country][language].get("Add_Concept","Additional Concepts (Optional)"), allow_custom_value=True, elem_id="additional_concept_btn"),
gr.update(value=metadata_dict[country][language].get("Hide_all_btn","π€ Hide All Faces")),
gr.update(value=metadata_dict[country][language].get("Hide_btn","π€ Hide Specific Faces")),
gr.update(value=metadata_dict[country][language].get("Unhide_btn","π Unhide Faces")),
gr.update(value=metadata_dict[country][language].get("Exclude_btn","Exclude Selected Example")),
gr.update(label=translated_categories[0], choices=sort_with_pyuca(concepts_dict[country][lang2eng_mapping.get(language, language)][categories_list[0]])),
gr.update(label=translated_categories[1], choices=sort_with_pyuca(concepts_dict[country][lang2eng_mapping.get(language, language)][categories_list[1]])),
gr.update(label=translated_categories[2], choices=sort_with_pyuca(concepts_dict[country][lang2eng_mapping.get(language, language)][categories_list[2]])),
gr.update(label=translated_categories[3], choices=sort_with_pyuca(concepts_dict[country][lang2eng_mapping.get(language, language)][categories_list[3]])),
gr.update(label=translated_categories[4], choices=sort_with_pyuca(concepts_dict[country][lang2eng_mapping.get(language, language)][categories_list[4]])),
)
def update_intro_language(selected_country, selected_language, intro_markdown, metadata):
if selected_language is None:
return intro_markdown
fn = metadata[selected_country][selected_language]["Intro"]
if not os.path.exists(fn):
return intro_markdown
with open(metadata[selected_country][selected_language]["Intro"], "r", encoding="utf-8") as f:
INTRO_TEXT = f.read()
return gr.Markdown(INTRO_TEXT)
def handle_click_example(user_examples, concepts_dict):
# print("handle_click_example")
# print(user_examples)
# ex = [item for item in user_examples]
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 1) Turn the flat string in slot 7 back into a list-of-lists
ex = list(user_examples)
raw_ac = ex[7] if len(ex) > 7 else ""
country_btn = ex[3]
language_btn = ex[4]
concepts = concepts_dict[country_btn][language_btn]
categories_list = sort_with_pyuca(list(concepts.keys()))
# NOTE: assuming concepts are unique across all categories
if isinstance(raw_ac, str):
parts = [p.strip() for p in raw_ac.split(",")]
if raw_ac.strip() == "":
additional_concepts_by_category = [[], [], [] ,[], []]
else:
additional_concepts_by_category = [[], [], [] ,[], []]
for p in parts:
if p in concepts[categories_list[0]]:
additional_concepts_by_category[0].append(p)
continue
elif p in concepts[categories_list[1]]:
additional_concepts_by_category[1].append(p)
continue
elif p in concepts[categories_list[2]]:
additional_concepts_by_category[2].append(p)
continue
elif p in concepts[categories_list[3]]:
additional_concepts_by_category[3].append(p)
continue
elif p in concepts[categories_list[4]]:
additional_concepts_by_category[4].append(p)
continue
# check if any of the lists are empty, if so, add an empty string
# for i in range(len(additional_concepts_by_category)):
# if not additional_concepts_by_category[i]:
# additional_concepts_by_category[i].append("")
else:
# if it somehow already is a list, leave it
additional_concepts_by_category = raw_ac
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
image_inp = ex[0]
image_url_inp = ex[1]
long_caption_inp = ex[2]
category_btn = ex[5]
concept_btn = ex[6]
# additional_concepts_by_category = ex[7]
exampleid_btn = ex[8]
# additional_concepts_by_category = [[] if (len(cat_concept)==1 and cat_concept[0]=='') else cat_concept for cat_concept in additional_concepts_by_category]
# import pdb; pdb.set_trace()
# # excluded_btn = ex[10] # TODO: add functionality that if True "exclude" button changes to "excluded"
# # is_blurred = ex[11]
# # Get predefined categories in the correct order
# predefined_categories = sorted(list(concepts_dict[country_btn][lang2eng_mapping.get(language_btn, language_btn)].keys()))[:5]
# # Create dropdown values for each category
# dropdown_values = []
# for category in predefined_categories:
# if additional_concepts_by_category and category in additional_concepts_by_category:
# dropdown_values.append(additional_concepts_by_category[category])
# else:
# dropdown_values.append(None)
### TODO: fix additional concepts not saving if categories in other language than English
# # Get the English version of the language
# eng_lang = lang2eng_mapping.get(language_btn, language_btn)
# # Get predefined categories in the correct order
# predefined_categories = sorted(list(concepts_dict[country_btn][eng_lang].keys()))[:5]
# # Create dropdown values for each category
# dropdown_values = []
# for category in predefined_categories:
# if additional_concepts_by_category and category in additional_concepts_by_category:
# dropdown_values.append(additional_concepts_by_category[category])
# else:
# dropdown_values.append(None)
# Need to return values for each category dropdown
return [image_inp, image_url_inp, long_caption_inp, exampleid_btn, category_btn, concept_btn] + additional_concepts_by_category + [True]
# return [
# image_inp,
# image_url_inp,
# long_caption_inp,
# exampleid_btn,
# category_btn,
# concept_btn,
# *additional_concepts_by_category,
# True # loading_example flag
# ]
def is_password_correct(hashed_password, entered_password):
is_valid = bcrypt.checkpw(entered_password.encode(), hashed_password.encode())
# print("password_check: ", entered_password," ", hashed_password," ", is_valid)
return is_valid
## Face blurring functions
def detect_faces(image):
"""
Detect faces in an image using RetinaFace.
Args:
image (numpy.ndarray): Input image in BGR
"""
# Start timer
start_time = time.time()
# Detect faces using RetinaFace
detection_start = time.time()
faces = RetinaFace.detect_faces(image, threshold=0.8)
detection_time = time.time() - detection_start
return faces, detection_time
# Hide Faces Button
def select_faces_to_hide(image, blur_faces_ids):
if image is None:
return None, Modal(visible=False), Modal(visible=False), None , "", None, gr.update(value=[])
else:
# Detect faces
# import pdb; pdb.set_trace()
face_images = image.copy()
faces, detection_time = detect_faces(face_images)
print(f"Detection time: {detection_time:.2f} seconds")
# pdb.set_trace()
# Draw detections with IDs
for face_id, face_data in enumerate(faces.values(), start=1):
x1, y1, x2, y2 = face_data['facial_area']
box_h = y2 - y1
# 1) dynamic scale & thickness
scale = max(0.5, box_h / 150)
thickness = max(1, int(box_h / 200))
# 2) prepare text & size
text = f"ID:{face_id}"
font = cv2.FONT_HERSHEY_SIMPLEX
(tw, th), baseline = cv2.getTextSize(text, font, scale, thickness)
# 3) background rectangle (semiβopaque or solid)
bg_tl = (x1, y1 - th - baseline - 4)
bg_br = (x1 + tw + 4, y1)
cv2.rectangle(face_images, bg_tl, bg_br, (0,0,0), cv2.FILLED)
# 4) put contrasting text
cv2.putText(face_images, text,
(x1 + 2, y1 - baseline - 2),
font, scale, (255,255,255), thickness, cv2.LINE_AA)
# 5) draw the face box (optional: use same contrasting color)
cv2.rectangle(face_images, (x1, y1), (x2, y2), (0,255,0), thickness)
# Update face count
face_count = len(faces)
blur_faces_ids = gr.update(choices=[f"Face ID: {i}" for i in range(1, face_count + 1)])
current_faces_info = gr.State(faces)
if face_count == 0:
return image, Modal(visible=False), Modal(visible=True), None, "", None, gr.update(value=[])
else:
return image, Modal(visible=True), Modal(visible=False), face_images, str(face_count), current_faces_info, blur_faces_ids #
def blur_selected_faces(image, blur_faces_ids, faces_info, face_img, faces_count): # is_blurred
if not blur_faces_ids:
return image, Modal(visible=True), face_img, faces_count, blur_faces_ids # is_blurred
faces = faces_info.value
parsed_faces_ids = blur_faces_ids
parsed_faces_ids = [f"face_{val.split(':')[-1].strip()}" for val in parsed_faces_ids]
# Base blur amount and bounds
MIN_BLUR = 31 # Minimum blur amount (must be odd)
MAX_BLUR = 131 # Maximum blur amount (must be odd)
blurring_start = time.time()
# Process each face
face_count = 0
if faces and isinstance(faces, dict):
# blur by id
for face_key in parsed_faces_ids:
face_count += 1
try:
face_data = faces[face_key]
except KeyError:
gr.Warning(f"β οΈ Face ID {face_key.split('_')[-1]} not found in detected faces.", duration=5)
return image, Modal(visible=True), face_img, faces_count, blur_faces_ids # is_blurred
# Get bounding box coordinates
x1, y1, x2, y2 = face_data['facial_area']
# Calculate face region size
face_width = x2 - x1
face_height = y2 - y1
face_size = max(face_width, face_height)
# Calculate adaptive blur amount based on face size
# Scale blur amount between MIN_BLUR and MAX_BLUR based on face size
# Using image width as reference for scaling
img_width = image.shape[1]
blur_amount = int(MIN_BLUR + (MAX_BLUR - MIN_BLUR) * (face_size / img_width))
# Ensure blur amount is odd
blur_amount = blur_amount if blur_amount % 2 == 1 else blur_amount + 1
# Ensure within bounds
blur_amount = max(MIN_BLUR, min(MAX_BLUR, blur_amount))
# Ensure the coordinates are within the image boundaries
ih, iw = image.shape[:2]
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(iw, x2), min(ih, y2)
# Extract face region
face_region = image[y1:y2, x1:x2]
# Apply blur
blurred_face = cv2.GaussianBlur(face_region, (blur_amount, blur_amount), 0)
# Replace face region with blurred version
image[y1:y2, x1:x2] = blurred_face
blurring_time = time.time() - blurring_start
# Print timing information
print(f"Face blurring performance metrics:")
print(f"Face blurring time: {blurring_time:.4f} seconds")
if face_count == 0:
return image, Modal(visible=True), face_img, faces_count, blur_faces_ids
else:
return image, Modal(visible=False), None, None, gr.update(value=[])
def blur_all_faces(image):
if image is None:
return None, Modal(visible=False)
else:
# Base blur amount and bounds
MIN_BLUR = 31 # Minimum blur amount (must be odd)
MAX_BLUR = 131 # Maximum blur amount (must be odd)
# Start timer
start_time = time.time()
# Detect faces using RetinaFace
detection_start = time.time()
faces = RetinaFace.detect_faces(image)
detection_time = time.time() - detection_start
# Create a copy of the image
output_image = image.copy()
face_count = 0
blurring_start = time.time()
# Process each face
if faces and isinstance(faces, dict):
for face_key in faces:
face_count += 1
face_data = faces[face_key]
# Get bounding box coordinates
x1, y1, x2, y2 = face_data['facial_area']
# Calculate face region size
face_width = x2 - x1
face_height = y2 - y1
face_size = max(face_width, face_height)
# Calculate adaptive blur amount based on face size
# Scale blur amount between MIN_BLUR and MAX_BLUR based on face size
# Using image width as reference for scaling
img_width = image.shape[1]
blur_amount = int(MIN_BLUR + (MAX_BLUR - MIN_BLUR) * (face_size / img_width))
# Ensure blur amount is odd
blur_amount = blur_amount if blur_amount % 2 == 1 else blur_amount + 1
# Ensure within bounds
blur_amount = max(MIN_BLUR, min(MAX_BLUR, blur_amount))
# Ensure the coordinates are within the image boundaries
ih, iw = image.shape[:2]
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(iw, x2), min(ih, y2)
# Extract face region
face_region = output_image[y1:y2, x1:x2]
# Apply blur
blurred_face = cv2.GaussianBlur(face_region, (blur_amount, blur_amount), 0)
# Replace face region with blurred version
output_image[y1:y2, x1:x2] = blurred_face
blurring_time = time.time() - blurring_start
total_time = time.time() - start_time
# Print timing information
print(f"Face blurring performance metrics:")
print(f"Total faces detected: {face_count}")
print(f"Face detection time: {detection_time:.4f} seconds")
print(f"Face blurring time: {blurring_time:.4f} seconds")
print(f"Total processing time: {total_time:.4f} seconds")
print(f"Average time per face: {(total_time/max(1, face_count)):.4f} seconds")
if face_count == 0:
return image, Modal(visible=True)
else:
return output_image, Modal(visible=False)
def unhide_faces(img, ori_img): # is_blurred
if img is None:
return None
elif np.array_equal(img, ori_img.value):
return img # is_blurred
else:
return ori_img.value
def check_exclude_fn(image):
if image is None:
gr.Warning("β οΈ No image to exclude.")
return gr.update(visible=False)
else:
return gr.update(visible=True)
def has_user_json(username, country,language_choice, local_ds_directory_path):
"""Check if JSON files exist for username pattern."""
return bool(glob.glob(os.path.join(local_ds_directory_path, "logged_in_users", country, language_choice, username, "**", "*.json"), recursive=True)) |