File size: 2,595 Bytes
b80af5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import spaces

# Model name
model_name = "medalpaca/medalpaca-7b"

# Load tokenizer and model globally for efficiency
print(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
    print(f"GPU device count: {torch.cuda.device_count()}")
    print(f"GPU device name: {torch.cuda.get_device_name(0)}")

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    device_map="auto",  # Use GPU if available
    load_in_8bit=torch.cuda.is_available()  # 8-bit quantization for GPU
)

def format_prompt(message, chat_history):
    prompt = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
    if chat_history:
        prompt += "Previous conversation:\n"
    for turn in chat_history:
        user_message, assistant_message = turn
        prompt += f"Human: {user_message}\nAssistant: {assistant_message}\n\n"
    prompt += f"Human: {message}\nAssistant:"
    return prompt

@spaces.GPU  # <--- This is REQUIRED for ZeroGPU!
def generate_response(message, chat_history):
    prompt = format_prompt(message, chat_history)
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    with torch.no_grad():
        generation_output = model.generate(
            input_ids=inputs.input_ids,
            attention_mask=inputs.attention_mask,
            max_new_tokens=512,
            temperature=0.7,
            top_p=0.9,
            do_sample=True,
        )
    full_output = tokenizer.decode(generation_output[0], skip_special_tokens=True)
    response = full_output.split("Assistant:")[-1].strip()
    chat_history.append((message, response))
    return "", chat_history

with gr.Blocks(css="footer {visibility: hidden}") as demo:
    gr.Markdown("# MedAlpaca Medical Chatbot")
    gr.Markdown("A specialized medical chatbot powered by MedAlpaca-7B.")
    gr.Markdown("Ask medical questions and get responses from a model trained on medical data.")
    
    chatbot = gr.Chatbot(type="messages")
    msg = gr.Textbox(placeholder="Type your medical question here...")
    clear = gr.Button("Clear")
    
    msg.submit(generate_response, [msg, chatbot], [msg, chatbot])  # Pass GPU-decorated function!
    clear.click(lambda: None, None, chatbot, queue=False)

if __name__ == "__main__":
    print("Starting Gradio app...")
    demo.launch(server_name="0.0.0.0")