medbot_2 / app.py
Thanush
Update SYSTEM_PROMPT in app.py for clarity and detail in patient information collection process
6e237a4
raw
history blame
6.52 kB
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from langchain.memory import ConversationBufferMemory
# Model configuration
LLAMA_MODEL = "meta-llama/Llama-2-7b-chat-hf"
MEDITRON_MODEL = "epfl-llm/meditron-7b"
SYSTEM_PROMPT = """You are a professional virtual doctor. Your goal is to collect detailed information about the user's name, age, health condition, symptoms, medical history, medications, lifestyle, and other relevant data.
Always begin by asking for the user's name and age if not already provided.
Ask 1-2 follow-up questions at a time to gather more details about:
- Detailed description of symptoms
- Duration (when did it start?)
- Severity (scale of 1-10)
- Aggravating or alleviating factors
- Related symptoms
- Medical history
- Current medications and allergies
After collecting sufficient information (at least 4-5 exchanges, but continue up to 10 if the user keeps responding), summarize findings, provide a likely diagnosis (if possible), and suggest when they should seek professional care.
If enough information is collected, provide a concise, general diagnosis and a practical over-the-counter medicine and home remedy suggestion.
Do NOT make specific prescriptions for prescription-only drugs.
Respond empathetically and clearly. Always be professional and thorough."""
MEDITRON_PROMPT = """<|im_start|>system
You are a specialized medical assistant focusing ONLY on suggesting over-the-counter medicines and home remedies based on patient information.
Based on the following patient information, provide ONLY:
1. One specific over-the-counter medicine with proper adult dosing instructions
2. One practical home remedy that might help
3. Clear guidance on when to seek professional medical care
Be concise, practical, and focus only on general symptom relief. Do not diagnose. Include a disclaimer that you are not a licensed medical professional.
<|im_end|>
<|im_start|>user
Patient information: {patient_info}
<|im_end|>
<|im_start|>assistant
"""
print("Loading Llama-2 model...")
tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL)
model = AutoModelForCausalLM.from_pretrained(
LLAMA_MODEL,
torch_dtype=torch.float16,
device_map="auto"
)
print("Llama-2 model loaded successfully!")
print("Loading Meditron model...")
meditron_tokenizer = AutoTokenizer.from_pretrained(MEDITRON_MODEL)
meditron_model = AutoModelForCausalLM.from_pretrained(
MEDITRON_MODEL,
torch_dtype=torch.float16,
device_map="auto"
)
print("Meditron model loaded successfully!")
# Initialize LangChain memory
memory = ConversationBufferMemory(return_messages=True)
def build_llama2_prompt(system_prompt, messages, user_input):
"""Format the conversation history and user input for Llama-2 chat models, using the full message sequence."""
prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n"
for msg in messages:
if msg.type == "human":
prompt += f"{msg.content} [/INST] "
elif msg.type == "ai":
prompt += f"{msg.content} </s><s>[INST] "
prompt += f"{user_input} [/INST] "
return prompt
def get_meditron_suggestions(patient_info):
"""Use Meditron model to generate medicine and remedy suggestions."""
prompt = MEDITRON_PROMPT.format(patient_info=patient_info)
inputs = meditron_tokenizer(prompt, return_tensors="pt").to(meditron_model.device)
with torch.no_grad():
outputs = meditron_model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=256,
temperature=0.7,
top_p=0.9,
do_sample=True
)
suggestion = meditron_tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
return suggestion
@spaces.GPU
def generate_response(message, history):
"""Generate a response using both models, with full context."""
# Save the latest user message and last assistant response to memory
if history and len(history[-1]) == 2:
memory.save_context({"input": history[-1][0]}, {"output": history[-1][1]})
memory.save_context({"input": message}, {"output": ""})
# Use the full message sequence from memory
messages = memory.chat_memory.messages
# Build the prompt with the full message sequence
prompt = build_llama2_prompt(SYSTEM_PROMPT, messages, message)
# Add summarization instruction after 4 turns (count human messages)
num_user_turns = sum(1 for m in messages if m.type == "human")
if num_user_turns >= 4:
prompt = prompt.replace("[/INST] ", "[/INST] Now summarize what you've learned and suggest when professional care may be needed. ")
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generate the Llama-2 response
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
# Decode and extract Llama-2's response
full_response = tokenizer.decode(outputs[0], skip_special_tokens=False)
llama_response = full_response.split('[/INST]')[-1].split('</s>')[0].strip()
# After 4 turns, add medicine suggestions from Meditron
if num_user_turns >= 4:
# Collect full patient conversation (all user messages)
full_patient_info = "\n".join([m.content for m in messages if m.type == "human"] + [message]) + "\n\nSummary: " + llama_response
# Get medicine suggestions
medicine_suggestions = get_meditron_suggestions(full_patient_info)
# Format final response
final_response = (
f"{llama_response}\n\n"
f"--- MEDICATION AND HOME CARE SUGGESTIONS ---\n\n"
f"{medicine_suggestions}"
)
return final_response
return llama_response
# Create the Gradio interface
demo = gr.ChatInterface(
fn=generate_response,
title="Medical Assistant with Medicine Suggestions",
description="Tell me about your symptoms, and after gathering enough information, I'll suggest potential remedies.",
examples=[
"I have a cough and my throat hurts",
"I've been having headaches for a week",
"My stomach has been hurting since yesterday"
],
theme="soft"
)
if __name__ == "__main__":
demo.launch()