Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,116 +1,81 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
SYSTEM_PROMPT = """
|
7 |
-
You are a knowledgeable medical assistant. Follow these steps in order:
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
- Family History
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
- One practical home remedy
|
32 |
-
- When they should seek professional medical care
|
33 |
|
34 |
-
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
"
|
42 |
-
|
43 |
-
}
|
44 |
-
|
45 |
-
# Global variables to store loaded models and tokenizers
|
46 |
-
loaded_models = {}
|
47 |
-
loaded_tokenizers = {}
|
48 |
-
|
49 |
-
def load_model(model_name):
|
50 |
-
"""Load model and tokenizer if not already loaded"""
|
51 |
-
if model_name not in loaded_models:
|
52 |
-
print(f"Loading {model_name}...")
|
53 |
-
model_path = MODELS[model_name]
|
54 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
55 |
-
model = AutoModelForCausalLM.from_pretrained(
|
56 |
-
model_path,
|
57 |
-
torch_dtype="auto",
|
58 |
-
device_map="auto" # Use GPU if available
|
59 |
-
)
|
60 |
-
loaded_models[model_name] = model
|
61 |
-
loaded_tokenizers[model_name] = tokenizer
|
62 |
-
print(f"{model_name} loaded successfully!")
|
63 |
-
return loaded_models[model_name], loaded_tokenizers[model_name]
|
64 |
-
|
65 |
-
# Pre-load the smaller model to start with
|
66 |
-
print("Pre-loading TinyLlama model...")
|
67 |
-
load_model("TinyLlama-1.1B")
|
68 |
-
|
69 |
-
@spaces.GPU # Required by ZeroGPU!
|
70 |
-
def generate_response(message, history, model_choice):
|
71 |
-
"""Generate a response from the selected model"""
|
72 |
-
# Load the selected model if not already loaded
|
73 |
-
model, tokenizer = load_model(model_choice)
|
74 |
-
|
75 |
-
# Format the prompt based on the history and system prompt
|
76 |
-
formatted_prompt = SYSTEM_PROMPT + "\n\n"
|
77 |
-
|
78 |
-
# Add conversation history
|
79 |
-
for human, assistant in history:
|
80 |
-
formatted_prompt += f"User: {human}\nAssistant: {assistant}\n"
|
81 |
-
|
82 |
-
# Add the current message
|
83 |
-
formatted_prompt += f"User: {message}\nAssistant:"
|
84 |
-
|
85 |
-
# Generate the response
|
86 |
-
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
|
87 |
-
outputs = model.generate(
|
88 |
-
inputs["input_ids"],
|
89 |
-
max_new_tokens=512,
|
90 |
-
temperature=0.7,
|
91 |
-
top_p=0.9,
|
92 |
-
do_sample=True,
|
93 |
)
|
94 |
-
|
95 |
-
|
96 |
-
return response.strip()
|
97 |
|
98 |
-
#
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
model_dropdown = gr.Dropdown(
|
105 |
-
choices=list(MODELS.keys()),
|
106 |
-
value="TinyLlama-1.1B",
|
107 |
-
label="Select Model"
|
108 |
-
)
|
109 |
-
|
110 |
-
chatbot = gr.ChatInterface(
|
111 |
-
fn=lambda message, history, model_choice: generate_response(message, history, model_choice),
|
112 |
-
additional_inputs=[model_dropdown],
|
113 |
-
)
|
114 |
|
115 |
if __name__ == "__main__":
|
116 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
4 |
+
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
5 |
+
from langchain_core.runnables.history import RunnableWithMessageHistory
|
6 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
7 |
+
from langchain_community.chat_message_histories import ChatMessageHistory
|
8 |
|
9 |
+
MODEL_NAME = "meta-llama/Llama-2-7b-chat-hf"
|
|
|
|
|
10 |
|
11 |
+
SYSTEM_PROMPT = (
|
12 |
+
"You are a professional virtual doctor. Your goal is to collect detailed information about the user's health condition, symptoms, medical history, medications, lifestyle, and other relevant data. "
|
13 |
+
"Start by greeting the user politely and ask them to describe their health concern. Based on their input, ask follow-up questions to gather as much relevant information as possible. "
|
14 |
+
"Be structured and thorough in your questioning. Organize the information into categories: symptoms, duration, severity, possible causes, past medical history, medications, allergies, habits (e.g., smoking, alcohol), and family history. "
|
15 |
+
"Always confirm and summarize what the user tells you. Respond empathetically and clearly. If unsure, ask for clarification. "
|
16 |
+
"Do NOT make a final diagnosis or suggest treatments. You are only here to collect and organize medical data to support a licensed physician. "
|
17 |
+
"Ask one or two questions at a time, and wait for user input."
|
18 |
+
)
|
19 |
|
20 |
+
print("Loading model...")
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
22 |
+
model = AutoModelForCausalLM.from_pretrained(
|
23 |
+
MODEL_NAME,
|
24 |
+
torch_dtype="auto",
|
25 |
+
device_map="auto"
|
26 |
+
)
|
27 |
+
pipe = pipeline(
|
28 |
+
"text-generation",
|
29 |
+
model=model,
|
30 |
+
tokenizer=tokenizer,
|
31 |
+
max_new_tokens=512,
|
32 |
+
temperature=0.7,
|
33 |
+
top_p=0.9,
|
34 |
+
pad_token_id=tokenizer.eos_token_id
|
35 |
+
)
|
36 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
37 |
+
print("Model loaded successfully!")
|
38 |
|
39 |
+
# LangChain prompt
|
40 |
+
prompt = ChatPromptTemplate.from_messages([
|
41 |
+
("system", SYSTEM_PROMPT),
|
42 |
+
MessagesPlaceholder(variable_name="history"),
|
43 |
+
("human", "{input}")
|
44 |
+
])
|
|
|
45 |
|
46 |
+
# Memory store
|
47 |
+
store = {}
|
|
|
|
|
48 |
|
49 |
+
def get_session_history(session_id: str) -> ChatMessageHistory:
|
50 |
+
if session_id not in store:
|
51 |
+
store[session_id] = ChatMessageHistory()
|
52 |
+
return store[session_id]
|
53 |
|
54 |
+
# Chain with memory
|
55 |
+
chain = prompt | llm
|
56 |
+
chain_with_history = RunnableWithMessageHistory(
|
57 |
+
chain,
|
58 |
+
get_session_history,
|
59 |
+
input_messages_key="input",
|
60 |
+
history_messages_key="history"
|
61 |
+
)
|
62 |
|
63 |
+
@spaces.GPU
|
64 |
+
def gradio_chat(user_message, history):
|
65 |
+
session_id = "default-session" # For demo; can be made unique per user
|
66 |
+
response = chain_with_history.invoke(
|
67 |
+
{"input": user_message},
|
68 |
+
config={"configurable": {"session_id": session_id}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
)
|
70 |
+
# LangChain returns a "AIMessage" object; get text
|
71 |
+
return response.content if hasattr(response, "content") else str(response)
|
|
|
72 |
|
73 |
+
# Gradio UI
|
74 |
+
demo = gr.ChatInterface(
|
75 |
+
fn=gradio_chat,
|
76 |
+
title="Medbot Chatbot (Llama-2 + LangChain + Gradio)",
|
77 |
+
description="Medical chatbot using Llama-2-7b-chat-hf, LangChain memory, and Gradio UI."
|
78 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
if __name__ == "__main__":
|
81 |
+
demo.launch()
|