import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer import spaces # Model configuration - Using only Me-LLaMA 13B-chat ME_LLAMA_MODEL = "clinicalnlplab/me-llama-13b-chat" # System prompts for different phases CONSULTATION_PROMPT = """You are a professional virtual doctor. Your goal is to collect detailed information about the user's health condition, symptoms, medical history, medications, lifestyle, and other relevant data. Ask 1-2 follow-up questions at a time to gather more details about: - Detailed description of symptoms - Duration (when did it start?) - Severity (scale of 1-10) - Aggravating or alleviating factors - Related symptoms - Medical history - Current medications and allergies After collecting sufficient information (4-5 exchanges), summarize findings and suggest when they should seek professional care. Do NOT make specific diagnoses or recommend specific treatments. Respond empathetically and clearly. Always be professional and thorough.""" MEDICINE_PROMPT = """You are a specialized medical assistant. Based on the patient information gathered, provide: 1. One specific over-the-counter medicine with proper adult dosing instructions 2. One practical home remedy that might help 3. Clear guidance on when to seek professional medical care Be concise, practical, and focus only on general symptom relief. Do not diagnose. Include a disclaimer that you are not a licensed medical professional. Patient information: {patient_info}""" # Global variables me_llama_model = None me_llama_tokenizer = None conversation_turns = 0 patient_data = [] def build_me_llama_prompt(system_prompt, history, user_input): """Format the conversation for Me-LLaMA chat model.""" prompt = f"[INST] <>\n{system_prompt}\n<>\n\n" # Add conversation history for user_msg, assistant_msg in history: prompt += f"{user_msg} [/INST] {assistant_msg} [INST] " # Add the current user input prompt += f"{user_input} [/INST] " return prompt @spaces.GPU def load_model_if_needed(): """Load Me-LLaMA model only when GPU is available.""" global me_llama_model, me_llama_tokenizer if me_llama_model is None: print("Loading Me-LLaMA 13B-chat model...") me_llama_tokenizer = AutoTokenizer.from_pretrained(ME_LLAMA_MODEL) me_llama_model = AutoModelForCausalLM.from_pretrained( ME_LLAMA_MODEL, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True ) print("Me-LLaMA 13B-chat model loaded successfully!") @spaces.GPU def generate_medicine_suggestions(patient_info): """Use Me-LLaMA to generate medicine and remedy suggestions.""" load_model_if_needed() # Create a simple prompt for medicine suggestions prompt = f"[INST] {MEDICINE_PROMPT.format(patient_info=patient_info)} [/INST] " inputs = me_llama_tokenizer(prompt, return_tensors="pt") # Move inputs to the same device as the model if torch.cuda.is_available(): inputs = {k: v.to(me_llama_model.device) for k, v in inputs.items()} with torch.no_grad(): outputs = me_llama_model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], max_new_tokens=300, temperature=0.7, top_p=0.9, do_sample=True, pad_token_id=me_llama_tokenizer.eos_token_id ) suggestion = me_llama_tokenizer.decode(outputs[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True) return suggestion @spaces.GPU def generate_response(message, history): """Generate response using only Me-LLaMA for both consultation and medicine suggestions.""" global conversation_turns, patient_data # Load model if needed load_model_if_needed() # Track conversation turns conversation_turns += 1 # Store patient data patient_data.append(message) # Phase 1-3: Information gathering if conversation_turns < 4: # Build consultation prompt prompt = build_me_llama_prompt(CONSULTATION_PROMPT, history, message) inputs = me_llama_tokenizer(prompt, return_tensors="pt") # Move inputs to the same device as the model if torch.cuda.is_available(): inputs = {k: v.to(me_llama_model.device) for k, v in inputs.items()} # Generate consultation response with torch.no_grad(): outputs = me_llama_model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], max_new_tokens=400, temperature=0.7, top_p=0.9, do_sample=True, pad_token_id=me_llama_tokenizer.eos_token_id ) # Decode response full_response = me_llama_tokenizer.decode(outputs[0], skip_special_tokens=False) response = full_response.split('[/INST]')[-1].split('')[0].strip() return response # Phase 4+: Summary and medicine suggestions else: # First, get summary from consultation summary_prompt = build_me_llama_prompt( CONSULTATION_PROMPT + "\n\nNow summarize what you've learned and suggest when professional care may be needed.", history, message ) inputs = me_llama_tokenizer(summary_prompt, return_tensors="pt") if torch.cuda.is_available(): inputs = {k: v.to(me_llama_model.device) for k, v in inputs.items()} # Generate summary with torch.no_grad(): outputs = me_llama_model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], max_new_tokens=400, temperature=0.7, top_p=0.9, do_sample=True, pad_token_id=me_llama_tokenizer.eos_token_id ) summary_response = me_llama_tokenizer.decode(outputs[0], skip_special_tokens=False) summary = summary_response.split('[/INST]')[-1].split('')[0].strip() # Then get medicine suggestions using the same model full_patient_info = "\n".join(patient_data) + f"\n\nMedical Summary: {summary}" medicine_suggestions = generate_medicine_suggestions(full_patient_info) # Combine both responses final_response = ( f"**MEDICAL SUMMARY:**\n{summary}\n\n" f"**MEDICATION AND HOME CARE SUGGESTIONS:**\n{medicine_suggestions}\n\n" f"**DISCLAIMER:** This is AI-generated advice for informational purposes only. Please consult a licensed healthcare provider for proper medical diagnosis and treatment." ) return final_response # Create the Gradio interface demo = gr.ChatInterface( fn=generate_response, title="🏥 Complete Medical Assistant - Me-LLaMA 13B", description="Comprehensive medical consultation powered by Me-LLaMA 13B-chat. One model handles both consultation and medicine suggestions. Tell me about your symptoms!", examples=[ "I have a persistent cough and sore throat for 3 days", "I've been having severe headaches and feel dizzy", "My stomach hurts and I feel nauseous after eating" ], theme="soft" ) if __name__ == "__main__": demo.launch()