import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM import spaces # Model name model_name = "medalpaca/medalpaca-7b" # Load tokenizer and model globally for efficiency print(f"CUDA available: {torch.cuda.is_available()}") if torch.cuda.is_available(): print(f"GPU device count: {torch.cuda.device_count()}") print(f"GPU device name: {torch.cuda.get_device_name(0)}") tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, device_map="auto", # Use GPU if available load_in_8bit=torch.cuda.is_available() # 8-bit quantization for GPU ) def format_prompt(message, chat_history): prompt = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n" if chat_history: prompt += "Previous conversation:\n" for turn in chat_history: user_message, assistant_message = turn prompt += f"Human: {user_message}\nAssistant: {assistant_message}\n\n" prompt += f"Human: {message}\nAssistant:" return prompt @spaces.GPU # <--- This is REQUIRED for ZeroGPU! def generate_response(message, chat_history): prompt = format_prompt(message, chat_history) inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): generation_output = model.generate( input_ids=inputs.input_ids, attention_mask=inputs.attention_mask, max_new_tokens=512, temperature=0.7, top_p=0.9, do_sample=True, ) full_output = tokenizer.decode(generation_output[0], skip_special_tokens=True) response = full_output.split("Assistant:")[-1].strip() chat_history.append((message, response)) return "", chat_history with gr.Blocks(css="footer {visibility: hidden}") as demo: gr.Markdown("# MedAlpaca Medical Chatbot") gr.Markdown("A specialized medical chatbot powered by MedAlpaca-7B.") gr.Markdown("Ask medical questions and get responses from a model trained on medical data.") chatbot = gr.Chatbot(type="messages") msg = gr.Textbox(placeholder="Type your medical question here...") clear = gr.Button("Clear") msg.submit(generate_response, [msg, chatbot], [msg, chatbot]) # Pass GPU-decorated function! clear.click(lambda: None, None, chatbot, queue=False) if __name__ == "__main__": print("Starting Gradio app...") demo.launch(server_name="0.0.0.0")