import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer from typing import Annotated, List, Dict, Any from typing_extensions import TypedDict from langgraph.graph import StateGraph, START from langgraph.graph.message import add_messages # Model configuration LLAMA_MODEL = "meta-llama/Llama-2-7b-chat-hf" MEDITRON_MODEL = "epfl-llm/meditron-7b" SYSTEM_PROMPT = """You are a professional virtual doctor. Your goal is to collect detailed information about the user's health condition, symptoms, medical history, medications, lifestyle, and other relevant data. Ask 1-2 follow-up questions at a time to gather more details about: - Detailed description of symptoms - Duration (when did it start?) - Severity (scale of 1-10) - Aggravating or alleviating factors - Related symptoms - Medical history - Current medications and allergies After collecting sufficient information (4-5 exchanges), summarize findings and suggest when they should seek professional care. Do NOT make specific diagnoses or recommend specific treatments. Respond empathetically and clearly. Always be professional and thorough.""" MEDITRON_PROMPT = """<|im_start|>system You are a specialized medical assistant focusing ONLY on suggesting over-the-counter medicines and home remedies based on patient information. Based on the following patient information, provide ONLY: 1. One specific over-the-counter medicine with proper adult dosing instructions 2. One practical home remedy that might help 3. Clear guidance on when to seek professional medical care Be concise, practical, and focus only on general symptom relief. Do not diagnose. Include a disclaimer that you are not a licensed medical professional. <|im_end|> <|im_start|>user Patient information: {patient_info} <|im_end|> <|im_start|>assistant """ print("Loading Llama-2 model...") tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained( LLAMA_MODEL, torch_dtype=torch.float16, device_map="auto" ) print("Llama-2 model loaded successfully!") print("Loading Meditron model...") meditron_tokenizer = AutoTokenizer.from_pretrained(MEDITRON_MODEL) if meditron_tokenizer.pad_token is None: meditron_tokenizer.pad_token = meditron_tokenizer.eos_token meditron_model = AutoModelForCausalLM.from_pretrained( MEDITRON_MODEL, torch_dtype=torch.float16, device_map="auto" ) print("Meditron model loaded successfully!") # Define the state for our LangGraph class ChatbotState(TypedDict): messages: Annotated[List, add_messages] turn_count: int patient_info: List[str] # Function to build Llama-2 prompt def build_llama2_prompt(messages): """Format the conversation history for Llama-2 chat models.""" prompt = f"[INST] <>\n{SYSTEM_PROMPT}\n<>\n\n" # Add conversation history for i, msg in enumerate(messages[:-1]): if i % 2 == 0: # User message prompt += f"{msg.content} [/INST] " else: # Assistant message prompt += f"{msg.content} [INST] " # Add the current user input prompt += f"{messages[-1].content} [/INST] " return prompt # Function to get Llama-2 response def get_llama2_response(prompt, turn_count): """Generate response from Llama-2 model.""" # Add summarization instruction after 4 turns if turn_count >= 4: prompt = prompt.replace("[/INST] ", "[/INST] Now summarize what you've learned and suggest when professional care may be needed. ") inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate( inputs.input_ids, attention_mask=inputs.attention_mask, max_new_tokens=512, temperature=0.7, top_p=0.9, do_sample=True, pad_token_id=tokenizer.pad_token_id ) full_response = tokenizer.decode(outputs[0], skip_special_tokens=False) response = full_response.split('[/INST]')[-1].split('')[0].strip() return response # Function to get Meditron suggestions def get_meditron_suggestions(patient_info): """Generate medicine and remedy suggestions from Meditron model.""" prompt = MEDITRON_PROMPT.format(patient_info=patient_info) inputs = meditron_tokenizer(prompt, return_tensors="pt").to(meditron_model.device) with torch.no_grad(): outputs = meditron_model.generate( inputs.input_ids, attention_mask=inputs.attention_mask, max_new_tokens=256, temperature=0.7, top_p=0.9, do_sample=True, pad_token_id=meditron_tokenizer.pad_token_id ) suggestion = meditron_tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True) return suggestion # Define LangGraph nodes def process_user_input(state: ChatbotState) -> ChatbotState: """Process user input and update state.""" # Extract the latest user message user_message = state["messages"][-1].content # Update patient info return { "patient_info": state["patient_info"] + [user_message], "turn_count": state["turn_count"] + 1 } def generate_llama_response(state: ChatbotState) -> ChatbotState: """Generate response using Llama-2 model.""" prompt = build_llama2_prompt(state["messages"]) response = get_llama2_response(prompt, state["turn_count"]) return {"messages": [{"role": "assistant", "content": response}]} def check_turn_count(state: ChatbotState) -> str: """Check if we need to add medicine suggestions.""" if state["turn_count"] >= 4: return "add_suggestions" return "continue" def add_medicine_suggestions(state: ChatbotState) -> ChatbotState: """Add medicine suggestions from Meditron model.""" # Get the last assistant response last_response = state["messages"][-1].content # Collect full patient conversation full_patient_info = "\n".join(state["patient_info"]) + "\n\nSummary: " + last_response # Get medicine suggestions medicine_suggestions = get_meditron_suggestions(full_patient_info) # Format final response final_response = ( f"{last_response}\n\n" f"--- MEDICATION AND HOME CARE SUGGESTIONS ---\n\n" f"{medicine_suggestions}" ) # Return updated message return {"messages": [{"role": "assistant", "content": final_response}]} # Build the LangGraph def build_graph(): """Build and return the LangGraph for our chatbot.""" graph = StateGraph(ChatbotState) # Add nodes graph.add_node("process_input", process_user_input) graph.add_node("generate_response", generate_llama_response) graph.add_node("add_suggestions", add_medicine_suggestions) # Add edges graph.add_edge(START, "process_input") graph.add_edge("process_input", "generate_response") graph.add_conditional_edges( "generate_response", check_turn_count, { "add_suggestions": "add_suggestions", "continue": END } ) graph.add_edge("add_suggestions", END) return graph.compile() # Initialize the graph chatbot_graph = build_graph() # Function for Gradio interface def chat_response(message, history): """Generate chatbot response using LangGraph.""" # Initialize state if this is the first message if not history: state = { "messages": [{"role": "user", "content": message}], "turn_count": 0, "patient_info": [] } else: # Convert history to messages format messages = [] for user_msg, bot_msg in history: messages.append({"role": "user", "content": user_msg}) messages.append({"role": "assistant", "content": bot_msg}) # Add current message messages.append({"role": "user", "content": message}) # Get turn count from history turn_count = len(history) # Build patient info from history patient_info = [user_msg for user_msg, _ in history] state = { "messages": messages, "turn_count": turn_count, "patient_info": patient_info } # Process through LangGraph result = chatbot_graph.invoke(state) # Return the latest assistant message return result["messages"][-1].content # Create the Gradio interface demo = gr.ChatInterface( fn=chat_response, title="Medical Assistant with LangGraph", description="Tell me about your symptoms, and after gathering enough information, I'll suggest potential remedies.", examples=[ "I have a cough and my throat hurts", "I've been having headaches for a week", "My stomach has been hurting since yesterday" ], theme="soft" ) if __name__ == "__main__": demo.launch()