import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import Annotated, List, Dict, Any
from typing_extensions import TypedDict
from langgraph.graph import StateGraph, START
from langgraph.graph.message import add_messages
# Model configuration
LLAMA_MODEL = "meta-llama/Llama-2-7b-chat-hf"
MEDITRON_MODEL = "epfl-llm/meditron-7b"
SYSTEM_PROMPT = """You are a professional virtual doctor. Your goal is to collect detailed information about the user's health condition, symptoms, medical history, medications, lifestyle, and other relevant data.
Ask 1-2 follow-up questions at a time to gather more details about:
- Detailed description of symptoms
- Duration (when did it start?)
- Severity (scale of 1-10)
- Aggravating or alleviating factors
- Related symptoms
- Medical history
- Current medications and allergies
After collecting sufficient information (4-5 exchanges), summarize findings and suggest when they should seek professional care. Do NOT make specific diagnoses or recommend specific treatments.
Respond empathetically and clearly. Always be professional and thorough."""
MEDITRON_PROMPT = """<|im_start|>system
You are a specialized medical assistant focusing ONLY on suggesting over-the-counter medicines and home remedies based on patient information.
Based on the following patient information, provide ONLY:
1. One specific over-the-counter medicine with proper adult dosing instructions
2. One practical home remedy that might help
3. Clear guidance on when to seek professional medical care
Be concise, practical, and focus only on general symptom relief. Do not diagnose. Include a disclaimer that you are not a licensed medical professional.
<|im_end|>
<|im_start|>user
Patient information: {patient_info}
<|im_end|>
<|im_start|>assistant
"""
print("Loading Llama-2 model...")
tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
LLAMA_MODEL,
torch_dtype=torch.float16,
device_map="auto"
)
print("Llama-2 model loaded successfully!")
print("Loading Meditron model...")
meditron_tokenizer = AutoTokenizer.from_pretrained(MEDITRON_MODEL)
if meditron_tokenizer.pad_token is None:
meditron_tokenizer.pad_token = meditron_tokenizer.eos_token
meditron_model = AutoModelForCausalLM.from_pretrained(
MEDITRON_MODEL,
torch_dtype=torch.float16,
device_map="auto"
)
print("Meditron model loaded successfully!")
# Define the state for our LangGraph
class ChatbotState(TypedDict):
messages: Annotated[List, add_messages]
turn_count: int
patient_info: List[str]
# Function to build Llama-2 prompt
def build_llama2_prompt(messages):
"""Format the conversation history for Llama-2 chat models."""
prompt = f"[INST] <>\n{SYSTEM_PROMPT}\n<>\n\n"
# Add conversation history
for i, msg in enumerate(messages[:-1]):
if i % 2 == 0: # User message
prompt += f"{msg.content} [/INST] "
else: # Assistant message
prompt += f"{msg.content} [INST] "
# Add the current user input
prompt += f"{messages[-1].content} [/INST] "
return prompt
# Function to get Llama-2 response
def get_llama2_response(prompt, turn_count):
"""Generate response from Llama-2 model."""
# Add summarization instruction after 4 turns
if turn_count >= 4:
prompt = prompt.replace("[/INST] ", "[/INST] Now summarize what you've learned and suggest when professional care may be needed. ")
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.pad_token_id
)
full_response = tokenizer.decode(outputs[0], skip_special_tokens=False)
response = full_response.split('[/INST]')[-1].split('')[0].strip()
return response
# Function to get Meditron suggestions
def get_meditron_suggestions(patient_info):
"""Generate medicine and remedy suggestions from Meditron model."""
prompt = MEDITRON_PROMPT.format(patient_info=patient_info)
inputs = meditron_tokenizer(prompt, return_tensors="pt").to(meditron_model.device)
with torch.no_grad():
outputs = meditron_model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=256,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=meditron_tokenizer.pad_token_id
)
suggestion = meditron_tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
return suggestion
# Define LangGraph nodes
def process_user_input(state: ChatbotState) -> ChatbotState:
"""Process user input and update state."""
# Extract the latest user message
user_message = state["messages"][-1].content
# Update patient info
return {
"patient_info": state["patient_info"] + [user_message],
"turn_count": state["turn_count"] + 1
}
def generate_llama_response(state: ChatbotState) -> ChatbotState:
"""Generate response using Llama-2 model."""
prompt = build_llama2_prompt(state["messages"])
response = get_llama2_response(prompt, state["turn_count"])
return {"messages": [{"role": "assistant", "content": response}]}
def check_turn_count(state: ChatbotState) -> str:
"""Check if we need to add medicine suggestions."""
if state["turn_count"] >= 4:
return "add_suggestions"
return "continue"
def add_medicine_suggestions(state: ChatbotState) -> ChatbotState:
"""Add medicine suggestions from Meditron model."""
# Get the last assistant response
last_response = state["messages"][-1].content
# Collect full patient conversation
full_patient_info = "\n".join(state["patient_info"]) + "\n\nSummary: " + last_response
# Get medicine suggestions
medicine_suggestions = get_meditron_suggestions(full_patient_info)
# Format final response
final_response = (
f"{last_response}\n\n"
f"--- MEDICATION AND HOME CARE SUGGESTIONS ---\n\n"
f"{medicine_suggestions}"
)
# Return updated message
return {"messages": [{"role": "assistant", "content": final_response}]}
# Build the LangGraph
def build_graph():
"""Build and return the LangGraph for our chatbot."""
graph = StateGraph(ChatbotState)
# Add nodes
graph.add_node("process_input", process_user_input)
graph.add_node("generate_response", generate_llama_response)
graph.add_node("add_suggestions", add_medicine_suggestions)
# Add edges
graph.add_edge(START, "process_input")
graph.add_edge("process_input", "generate_response")
graph.add_conditional_edges(
"generate_response",
check_turn_count,
{
"add_suggestions": "add_suggestions",
"continue": END
}
)
graph.add_edge("add_suggestions", END)
return graph.compile()
# Initialize the graph
chatbot_graph = build_graph()
# Function for Gradio interface
def chat_response(message, history):
"""Generate chatbot response using LangGraph."""
# Initialize state if this is the first message
if not history:
state = {
"messages": [{"role": "user", "content": message}],
"turn_count": 0,
"patient_info": []
}
else:
# Convert history to messages format
messages = []
for user_msg, bot_msg in history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": bot_msg})
# Add current message
messages.append({"role": "user", "content": message})
# Get turn count from history
turn_count = len(history)
# Build patient info from history
patient_info = [user_msg for user_msg, _ in history]
state = {
"messages": messages,
"turn_count": turn_count,
"patient_info": patient_info
}
# Process through LangGraph
result = chatbot_graph.invoke(state)
# Return the latest assistant message
return result["messages"][-1].content
# Create the Gradio interface
demo = gr.ChatInterface(
fn=chat_response,
title="Medical Assistant with LangGraph",
description="Tell me about your symptoms, and after gathering enough information, I'll suggest potential remedies.",
examples=[
"I have a cough and my throat hurts",
"I've been having headaches for a week",
"My stomach has been hurting since yesterday"
],
theme="soft"
)
if __name__ == "__main__":
demo.launch()