teganmosi commited on
Commit
979b378
·
verified ·
1 Parent(s): fb0d547

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -7
app.py CHANGED
@@ -20,7 +20,8 @@ from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
20
  from llama_index.llms import HuggingFaceLLM
21
  from langchain.document_loaders import PyPDFLoader
22
 
23
- documents = SimpleDirectoryReader("Dat").load_data()
 
24
 
25
  from llama_index.prompts.prompts import SimpleInputPrompt
26
 
@@ -67,8 +68,8 @@ query_wrapper_prompt = SimpleInputPrompt("<|USER|>{query_str}<|ASSISTANT|>")
67
  import torch
68
 
69
  llm = HuggingFaceLLM(
70
- context_window=4096,
71
- max_new_tokens=256,
72
  generate_kwargs={"temperature": 0.5, "do_sample": False},
73
  system_prompt=system_prompt,
74
  query_wrapper_prompt=query_wrapper_prompt,
@@ -87,7 +88,7 @@ embed_model = LangchainEmbedding(
87
  )
88
 
89
  service_context = ServiceContext.from_defaults(
90
- chunk_size=1024,
91
  llm=llm,
92
  embed_model=embed_model
93
  )
@@ -95,9 +96,6 @@ service_context = ServiceContext.from_defaults(
95
  index = VectorStoreIndex.from_documents(documents, service_context=service_context)
96
 
97
  query_engine = index.as_query_engine()
98
- response = query_engine.query("What is cyclothymic disorder?")
99
-
100
- print(response)
101
 
102
  import gradio as gr
103
 
 
20
  from llama_index.llms import HuggingFaceLLM
21
  from langchain.document_loaders import PyPDFLoader
22
 
23
+ documents = [SimpleDirectoryReader("Dat").load_data(file_path=file)[0] for file in os.listdir("Dat")]
24
+ documents = [CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=0).split_text(doc) for doc in documents]
25
 
26
  from llama_index.prompts.prompts import SimpleInputPrompt
27
 
 
68
  import torch
69
 
70
  llm = HuggingFaceLLM(
71
+ context_window=2048,
72
+ max_new_tokens=128,
73
  generate_kwargs={"temperature": 0.5, "do_sample": False},
74
  system_prompt=system_prompt,
75
  query_wrapper_prompt=query_wrapper_prompt,
 
88
  )
89
 
90
  service_context = ServiceContext.from_defaults(
91
+ chunk_size=512,
92
  llm=llm,
93
  embed_model=embed_model
94
  )
 
96
  index = VectorStoreIndex.from_documents(documents, service_context=service_context)
97
 
98
  query_engine = index.as_query_engine()
 
 
 
99
 
100
  import gradio as gr
101