Spaces:
Configuration error
Configuration error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pathlib
|
3 |
+
import spaces # Added for ZeroGPU
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
repo_dir = pathlib.Path("Thin-Plate-Spline-Motion-Model").absolute()
|
9 |
+
if not repo_dir.exists():
|
10 |
+
os.system("git clone https://github.com/yoyo-nb/Thin-Plate-Spline-Motion-Model")
|
11 |
+
os.chdir(repo_dir.name)
|
12 |
+
if not (repo_dir / "checkpoints").exists():
|
13 |
+
os.system("mkdir checkpoints")
|
14 |
+
if not (repo_dir / "checkpoints/vox.pth.tar").exists():
|
15 |
+
os.system("gdown 1-CKOjv_y_TzNe-dwQsjjeVxJUuyBAb5X -O checkpoints/vox.pth.tar")
|
16 |
+
|
17 |
+
title = "#β¨ MotionMagicAI"
|
18 |
+
DESCRIPTION = '''### π₯ <b>MotionMagicAI</b> Brings Images to Life! π Powered by Thin-Plate Spline Motion Model (CVPR 2022). Upload a face, add a video, and watch it dance or sing! πΊπ <a href='https://arxiv.org/abs/2203.14367'>[Paper]</a> <a href='https://github.com/yoyo-nb/Thin-Plate-Spline-Motion-Model'>[Code]</a>
|
19 |
+
<img id="overview" alt="overview" src="https://github.com/yoyo-nb/Thin-Plate-Spline-Motion-Model/raw/main/assets/vox.gif" />
|
20 |
+
'''
|
21 |
+
FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=gradio-blocks.Image-Animation-using-Thin-Plate-Spline-Motion-Model" />'
|
22 |
+
|
23 |
+
def get_style_image_path(style_name: str) -> str:
|
24 |
+
base_path = 'assets'
|
25 |
+
filenames = {
|
26 |
+
'source': 'source.png',
|
27 |
+
'driving': 'driving.mp4',
|
28 |
+
}
|
29 |
+
return f'{base_path}/{filenames[style_name]}'
|
30 |
+
|
31 |
+
def get_style_image_markdown_text(style_name: str) -> str:
|
32 |
+
url = get_style_image_path(style_name)
|
33 |
+
return f'<img id="style-image" src="{url}" alt="style image">'
|
34 |
+
|
35 |
+
def update_style_image(style_name: str) -> dict:
|
36 |
+
text = get_style_image_markdown_text(style_name)
|
37 |
+
return gr.Markdown.update(value=text)
|
38 |
+
|
39 |
+
@spaces.GPU(duration=120) # Added for ZeroGPU, set duration for long inference
|
40 |
+
def inference(img, vid):
|
41 |
+
if not os.path.exists('temp'):
|
42 |
+
os.system('mkdir temp')
|
43 |
+
|
44 |
+
img.save("temp/image.jpg", "JPEG")
|
45 |
+
if torch.cuda.is_available():
|
46 |
+
os.system(f"python demo.py --config config/vox-256.yaml --checkpoint ./checkpoints/vox.pth.tar --source_image 'temp/image.jpg' --driving_video {vid} --result_video './temp/result.mp4'")
|
47 |
+
else:
|
48 |
+
os.system(f"python demo.py --config config/vox-256.yaml --checkpoint ./checkpoints/vox.pth.tar --source_image 'temp/image.jpg' --driving_video {vid} --result_video './temp/result.mp4' --cpu")
|
49 |
+
return './temp/result.mp4'
|
50 |
+
|
51 |
+
def main():
|
52 |
+
with gr.Blocks(css='style.css') as demo:
|
53 |
+
gr.Markdown(title)
|
54 |
+
gr.Markdown(DESCRIPTION)
|
55 |
+
|
56 |
+
with gr.Box():
|
57 |
+
gr.Markdown('''## Step 1 (Provide Input Face Image)
|
58 |
+
- Drop an image containing a face to the **Input Image**.
|
59 |
+
- If there are multiple faces in the image, use Edit button in the upper right corner and crop the input image beforehand.
|
60 |
+
''')
|
61 |
+
with gr.Row():
|
62 |
+
with gr.Column():
|
63 |
+
with gr.Row():
|
64 |
+
input_image = gr.Image(label='Input Image',
|
65 |
+
type="pil")
|
66 |
+
|
67 |
+
with gr.Row():
|
68 |
+
paths = sorted(pathlib.Path('assets').glob('*.png'))
|
69 |
+
gr.Examples(inputs=[input_image],
|
70 |
+
examples=[[path.as_posix()] for path in paths])
|
71 |
+
|
72 |
+
with gr.Box():
|
73 |
+
gr.Markdown('''## Step 2 (Select Driving Video)
|
74 |
+
- Select **Style Driving Video for the face image animation**.
|
75 |
+
''')
|
76 |
+
with gr.Row():
|
77 |
+
with gr.Column():
|
78 |
+
with gr.Row():
|
79 |
+
driving_video = gr.Video(label='Driving Video',
|
80 |
+
format="mp4")
|
81 |
+
|
82 |
+
with gr.Row():
|
83 |
+
paths = sorted(pathlib.Path('assets').glob('*.mp4'))
|
84 |
+
gr.Examples(inputs=[driving_video],
|
85 |
+
examples=[[path.as_posix()] for path in paths])
|
86 |
+
|
87 |
+
with gr.Box():
|
88 |
+
gr.Markdown('''## Step 3 (Generate Animated Image based on the Video)
|
89 |
+
- Hit the **Generate** button. (Note: On cpu-basic, it takes ~ 10 minutes to generate final results.)
|
90 |
+
''')
|
91 |
+
with gr.Row():
|
92 |
+
with gr.Column():
|
93 |
+
with gr.Row():
|
94 |
+
generate_button = gr.Button('Generate')
|
95 |
+
|
96 |
+
with gr.Column():
|
97 |
+
result = gr.Video(label="Output")
|
98 |
+
gr.Markdown(FOOTER)
|
99 |
+
generate_button.click(fn=inference,
|
100 |
+
inputs=[
|
101 |
+
input_image,
|
102 |
+
driving_video
|
103 |
+
],
|
104 |
+
outputs=result)
|
105 |
+
|
106 |
+
demo.queue(max_size=10).launch()
|
107 |
+
|
108 |
+
if __name__ == '__main__':
|
109 |
+
main()
|