File size: 13,822 Bytes
748b2eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# -*- coding: utf-8 -*-
"""app.py.ipynb

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1AO89EnPiFQ-JnEpNKwsABc0bj5or_Upn
"""

import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split, GridSearchCV
import gradio as gr
import warnings
warnings.filterwarnings('ignore')

# Step 1: Generate dataset and train model
np.random.seed(42)
moods = ['happy', 'stressed', 'bored', 'sad', 'excited', 'tired', 'anxious', 'content', 'nostalgic', 'hungry']
snacks = [
    'fruit', 'chocolate', 'chips', 'popcorn', 'ice cream', 'pretzels', 'cookies', 'candy',
    'yogurt', 'granola bar', 'crackers', 'veggies', 'cheese',
    'chin chin', 'kuli kuli', 'plantain chips', 'puff puff', 'akara', 'coconut candy',
    'kokoro', 'dodo ikire', 'roasted groundnuts', 'suya', 'boli', 'kilishi',
    'buns', 'doughnuts', 'meat pie', 'egg rolls'
]
times_of_day = ['morning', 'afternoon', 'evening', 'midnight']

# Snack groups
snack_groups = {
    'nigerian_fried': ['chin chin', 'puff puff', 'akara', 'buns', 'doughnuts', 'meat pie', 'egg rolls'],
    'nigerian_savory': ['suya', 'kuli kuli', 'plantain chips', 'boli', 'kilishi', 'roasted groundnuts'],
    'nigerian_sweet': ['coconut candy', 'dodo ikire', 'chocolate', 'candy', 'cookies', 'ice cream'],
    'savory_snacks': ['chips', 'popcorn', 'pretzels', 'crackers', 'kokoro'],
    'healthy_light': ['fruit', 'yogurt', 'veggies', 'granola bar', 'cheese']
}
snack_to_group = {snack: group for group, snacks in snack_groups.items() for snack in snacks}
group_list = list(snack_groups.keys())

# Mood-time-snack group affinities
mood_time_group_probs = {
    'happy': {
        'morning': {'nigerian_fried': 0.75, 'nigerian_sweet': 0.2, 'healthy_light': 0.05},
        'afternoon': {'nigerian_fried': 0.75, 'nigerian_sweet': 0.2, 'healthy_light': 0.05},
        'evening': {'nigerian_sweet': 0.75, 'healthy_light': 0.2, 'savory_snacks': 0.05},
        'midnight': {'nigerian_sweet': 0.75, 'nigerian_savory': 0.2, 'savory_snacks': 0.05}
    },
    'stressed': {
        'morning': {'nigerian_sweet': 0.75, 'nigerian_fried': 0.2, 'healthy_light': 0.05},
        'afternoon': {'nigerian_sweet': 0.75, 'nigerian_fried': 0.2, 'savory_snacks': 0.05},
        'evening': {'nigerian_sweet': 0.75, 'savory_snacks': 0.2, 'nigerian_savory': 0.05},
        'midnight': {'nigerian_sweet': 0.75, 'nigerian_savory': 0.2, 'savory_snacks': 0.05}
    },
    'bored': {
        'morning': {'savory_snacks': 0.75, 'nigerian_fried': 0.2, 'healthy_light': 0.05},
        'afternoon': {'savory_snacks': 0.75, 'nigerian_savory': 0.2, 'healthy_light': 0.05},
        'evening': {'savory_snacks': 0.75, 'nigerian_savory': 0.2, 'healthy_light': 0.05},
        'midnight': {'savory_snacks': 0.75, 'nigerian_savory': 0.2, 'healthy_light': 0.05}
    },
    'sad': {
        'morning': {'nigerian_sweet': 0.75, 'nigerian_fried': 0.2, 'healthy_light': 0.05},
        'afternoon': {'nigerian_sweet': 0.75, 'healthy_light': 0.2, 'nigerian_fried': 0.05},
        'evening': {'nigerian_sweet': 0.75, 'healthy_light': 0.2, 'savory_snacks': 0.05},
        'midnight': {'nigerian_sweet': 0.75, 'healthy_light': 0.2, 'nigerian_savory': 0.05}
    },
    'excited': {
        'morning': {'nigerian_fried': 0.75, 'nigerian_sweet': 0.2, 'healthy_light': 0.05},
        'afternoon': {'nigerian_fried': 0.75, 'nigerian_savory': 0.2, 'nigerian_sweet': 0.05},
        'evening': {'nigerian_sweet': 0.75, 'nigerian_savory': 0.2, 'savory_snacks': 0.05},
        'midnight': {'nigerian_savory': 0.75, 'nigerian_sweet': 0.2, 'savory_snacks': 0.05}
    },
    'tired': {
        'morning': {'healthy_light': 0.75, 'nigerian_fried': 0.2, 'nigerian_sweet': 0.05},
        'afternoon': {'healthy_light': 0.75, 'nigerian_fried': 0.2, 'savory_snacks': 0.05},
        'evening': {'healthy_light': 0.75, 'nigerian_sweet': 0.2, 'savory_snacks': 0.05},
        'midnight': {'healthy_light': 0.75, 'nigerian_savory': 0.2, 'nigerian_sweet': 0.05}
    },
    'anxious': {
        'morning': {'savory_snacks': 0.75, 'nigerian_fried': 0.2, 'healthy_light': 0.05},
        'afternoon': {'savory_snacks': 0.75, 'nigerian_savory': 0.2, 'healthy_light': 0.05},
        'evening': {'savory_snacks': 0.75, 'nigerian_savory': 0.2, 'healthy_light': 0.05},
        'midnight': {'savory_snacks': 0.75, 'nigerian_savory': 0.2, 'healthy_light': 0.05}
    },
    'content': {
        'morning': {'healthy_light': 0.75, 'nigerian_fried': 0.2, 'nigerian_sweet': 0.05},
        'afternoon': {'nigerian_savory': 0.75, 'healthy_light': 0.2, 'nigerian_fried': 0.05},
        'evening': {'healthy_light': 0.75, 'nigerian_sweet': 0.2, 'savory_snacks': 0.05},
        'midnight': {'healthy_light': 0.75, 'nigerian_savory': 0.2, 'nigerian_sweet': 0.05}
    },
    'nostalgic': {
        'morning': {'nigerian_sweet': 0.75, 'nigerian_fried': 0.2, 'healthy_light': 0.05},
        'afternoon': {'nigerian_sweet': 0.75, 'nigerian_fried': 0.2, 'healthy_light': 0.05},
        'evening': {'nigerian_sweet': 0.75, 'healthy_light': 0.2, 'savory_snacks': 0.05},
        'midnight': {'nigerian_sweet': 0.75, 'nigerian_savory': 0.2, 'healthy_light': 0.05}
    },
    'hungry': {
        'morning': {'nigerian_fried': 0.75, 'savory_snacks': 0.2, 'healthy_light': 0.05},
        'afternoon': {'nigerian_savory': 0.75, 'nigerian_fried': 0.2, 'savory_snacks': 0.05},
        'evening': {'nigerian_savory': 0.75, 'savory_snacks': 0.2, 'nigerian_sweet': 0.05},
        'midnight': {'nigerian_savory': 0.75, 'savory_snacks': 0.2, 'nigerian_sweet': 0.05}
    }
}

# Generate 1800 samples
n_samples = 1800
data = {'mood': [], 'time_of_day': [], 'hunger_level': [], 'sentiment': [], 'snack': [], 'snack_group': []}

for _ in range(n_samples):
    mood = np.random.choice(moods, p=[0.15, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.05])
    time = np.random.choice(times_of_day)
    hunger_level = 1.0 if mood == 'hungry' else np.random.uniform(0, 0.8)
    sentiment = round(np.random.uniform(-1, 1), 2)

    group_probs = [mood_time_group_probs[mood][time].get(g, 0.01) for g in group_list]
    group = np.random.choice(group_list, p=group_probs / np.sum(group_probs))
    group_snacks = snack_groups[group]
    snack_probs = [
        0.6 if (snack == 'suya' and time in ['evening', 'midnight']) or (snack == 'boli' and time == 'afternoon') or
               (snack in ['puff puff', 'buns', 'doughnuts', 'meat pie', 'egg rolls'] and time in ['morning', 'afternoon']) or
               (snack == 'akara' and time in ['morning', 'midnight']) or
               (snack == 'chin chin' and time in ['morning', 'afternoon', 'midnight'])
        else 0.35 if snack in ['kuli kuli', 'plantain chips', 'popcorn', 'kokoro', 'roasted groundnuts', 'kilishi']
        else 0.2 for snack in group_snacks
    ]
    if time not in ['evening', 'midnight'] and 'suya' in group_snacks:
        snack_probs[group_snacks.index('suya')] = 0
    if time != 'afternoon' and 'boli' in group_snacks:
        snack_probs[group_snacks.index('boli')] = 0
    if time not in ['morning', 'afternoon']:
        for snack in ['puff puff', 'buns', 'doughnuts', 'meat pie', 'egg rolls']:
            if snack in group_snacks:
                snack_probs[group_snacks.index(snack)] = 0
    if time not in ['morning', 'midnight'] and 'akara' in group_snacks:
        snack_probs[group_snacks.index('akara')] = 0
    snack_probs = [p / sum(snack_probs) if sum(snack_probs) > 0 else 0.2 for p in snack_probs]
    snack = np.random.choice(group_snacks, p=snack_probs)

    data['mood'].append(mood)
    data['time_of_day'].append(time)
    data['hunger_level'].append(hunger_level)
    data['sentiment'].append(sentiment)
    data['snack'].append(snack)
    data['snack_group'].append(group)

df = pd.DataFrame(data)

# Adjust sentiment
df.loc[df['mood'].isin(['happy', 'excited', 'content', 'nostalgic']), 'sentiment'] = df.loc[
    df['mood'].isin(['happy', 'excited', 'content', 'nostalgic']), 'sentiment'].clip(lower=0.2)
df.loc[df['mood'].isin(['stressed', 'sad', 'anxious', 'tired']), 'sentiment'] = df.loc[
    df['mood'].isin(['stressed', 'sad', 'anxious', 'tired']), 'sentiment'].clip(upper=-0.1)
df.loc[df['mood'].isin(['bored', 'hungry']), 'sentiment'] = df.loc[
    df['mood'].isin(['bored', 'hungry']), 'sentiment'].clip(-0.3, 0.3)

# Add snack_type and snack_texture
snack_types = {
    'chin chin': 'sweet', 'puff puff': 'sweet', 'akara': 'savory', 'suya': 'spicy',
    'kuli kuli': 'spicy', 'plantain chips': 'savory', 'coconut candy': 'sweet',
    'dodo ikire': 'sweet', 'roasted groundnuts': 'savory', 'fruit': 'light',
    'yogurt': 'light', 'veggies': 'light', 'granola bar': 'light', 'cheese': 'light',
    'chocolate': 'sweet', 'candy': 'sweet', 'cookies': 'sweet', 'ice cream': 'sweet',
    'chips': 'savory', 'popcorn': 'savory', 'pretzels': 'savory', 'crackers': 'savory',
    'kokoro': 'savory', 'boli': 'savory', 'kilishi': 'spicy',
    'buns': 'sweet', 'doughnuts': 'sweet', 'meat pie': 'savory', 'egg rolls': 'savory'
}
snack_textures = {
    'chin chin': 'crisp', 'puff puff': 'soft', 'akara': 'soft', 'suya': 'chewy',
    'kuli kuli': 'crisp', 'plantain chips': 'crisp', 'coconut candy': 'chewy',
    'dodo ikire': 'soft', 'roasted groundnuts': 'crisp', 'fruit': 'soft',
    'yogurt': 'soft', 'veggies': 'crisp', 'granola bar': 'crisp', 'cheese': 'soft',
    'chocolate': 'soft', 'candy': 'chewy', 'cookies': 'crisp', 'ice cream': 'soft',
    'chips': 'crisp', 'popcorn': 'crisp', 'pretzels': 'crisp', 'crackers': 'crisp',
    'kokoro': 'crisp', 'boli': 'soft', 'kilishi': 'chewy',
    'buns': 'soft', 'doughnuts': 'soft', 'meat pie': 'soft', 'egg rolls': 'soft'
}
df['snack_type'] = df['snack'].map(snack_types)
df['snack_texture'] = df['snack'].map(snack_textures)

# Encode features
le_mood = LabelEncoder()
le_time = LabelEncoder()
le_type = LabelEncoder()
le_texture = LabelEncoder()
le_group = LabelEncoder()

df['mood_encoded'] = le_mood.fit_transform(df['mood'])
df['time_encoded'] = le_time.fit_transform(df['time_of_day'])
df['type_encoded'] = le_type.fit_transform(df['snack_type'])
df['texture_encoded'] = le_texture.fit_transform(df['snack_texture'])
df['group_encoded'] = le_group.fit_transform(df['snack_group'])

X = df[['mood_encoded', 'time_encoded', 'hunger_level', 'sentiment', 'type_encoded', 'texture_encoded']]
y = df['group_encoded']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)

# Train model
param_grid = {
    'n_estimators': [300, 400],
    'max_depth': [12, 15],
    'min_samples_split': [5, 10]
}
model = RandomForestClassifier(class_weight='balanced', random_state=42)
grid_search = GridSearchCV(model, param_grid, cv=5, scoring='accuracy', n_jobs=-1)
grid_search.fit(X_train, y_train)
best_model = grid_search.best_estimator_

# Prediction function with error handling
def predict_snack(mood, time_of_day, hunger_level, sentiment, snack_type):
    mood_enc = le_mood.transform([mood])[0]
    time_enc = le_time.transform([time_of_day])[0]
    type_enc = le_type.transform([snack_type])[0]
    type_to_texture = {'sweet': 'soft', 'savory': 'crisp', 'spicy': 'chewy', 'light': 'soft'}
    texture_enc = le_texture.transform([type_to_texture[snack_type]])[0]
    input_data = np.array([[mood_enc, time_enc, hunger_level, sentiment, type_enc, texture_enc]])
    pred = best_model.predict(input_data)
    group = le_group.inverse_transform(pred)[0]
    group_snacks = snack_groups[group]
    snack_probs = [
        0.6 if (snack == 'suya' and time_of_day in ['evening', 'midnight']) or
               (snack == 'boli' and time_of_day == 'afternoon') or
               (snack in ['puff puff', 'buns', 'doughnuts', 'meat pie', 'egg rolls'] and time_of_day in ['morning', 'afternoon']) or
               (snack == 'akara' and time_of_day in ['morning', 'midnight']) or
               (snack == 'chin chin' and time_of_day in ['morning', 'afternoon', 'midnight'])
        else 0.35 if snack in ['kuli kuli', 'plantain chips', 'popcorn', 'kokoro', 'roasted groundnuts', 'kilishi']
        else 0.2 for snack in group_snacks
    ]
    # Only modify probabilities if the snack is in the group
    if time_of_day not in ['evening', 'midnight'] and 'suya' in group_snacks:
        snack_probs[group_snacks.index('suya')] = 0
    if time_of_day != 'afternoon' and 'boli' in group_snacks:
        snack_probs[group_snacks.index('boli')] = 0
    if time_of_day not in ['morning', 'afternoon']:
        for snack in ['puff puff', 'buns', 'doughnuts', 'meat pie', 'egg rolls']:
            if snack in group_snacks:
                snack_probs[group_snacks.index(snack)] = 0
    if time_of_day not in ['morning', 'midnight'] and 'akara' in group_snacks:
        snack_probs[group_snacks.index('akara')] = 0
    snack_probs = [p / sum(snack_probs) if sum(snack_probs) > 0 else 0.2 for p in snack_probs]
    snack = np.random.choice(group_snacks, p=snack_probs)
    return f"You're craving: {snack} (from {group})!"

# Gradio interface
interface = gr.Interface(
    fn=predict_snack,
    inputs=[
        gr.Dropdown(choices=moods, label="Mood", value="happy"),
        gr.Dropdown(choices=times_of_day, label="Time of Day", value="morning"),
        gr.Slider(minimum=0, maximum=1, step=0.1, label="Hunger Level (0 to 1)", value=0.5),
        gr.Slider(minimum=-1, maximum=1, step=0.1, label="Sentiment (-1 to 1)", value=0.0),
        gr.Dropdown(choices=['sweet', 'savory', 'spicy', 'light'], label="Snack Type", value="sweet")
    ],
    outputs=gr.Textbox(label="Prediction"),
    title="Snack Predictor",
    description="Discover your perfect snack based on your mood,time of the day and preferences!"
)

# Launch the app
interface.launch(share=True)