File size: 16,352 Bytes
748b2eb
 
 
 
 
 
b5194d6
748b2eb
1f6b20c
 
748b2eb
1f6b20c
748b2eb
729b8a5
748b2eb
 
 
729b8a5
748b2eb
729b8a5
748b2eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
082307a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
748b2eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
729b8a5
082307a
748b2eb
 
 
729b8a5
 
748b2eb
 
 
729b8a5
748b2eb
 
 
 
 
 
 
 
 
 
 
 
 
 
729b8a5
748b2eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
729b8a5
 
 
748b2eb
 
 
 
 
 
 
729b8a5
 
 
748b2eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
729b8a5
748b2eb
 
 
 
 
 
 
 
 
 
 
729b8a5
748b2eb
 
 
 
729b8a5
748b2eb
 
 
 
 
 
 
 
 
 
 
 
 
 
729b8a5
748b2eb
 
729b8a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5194d6
 
1f6b20c
b5194d6
 
1f6b20c
b5194d6
1f6b20c
 
729b8a5
 
 
 
 
 
 
 
 
 
1f6b20c
729b8a5
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split, GridSearchCV
import gradio as gr
import os
import warnings
import logging

warnings.filterwarnings('ignore')
logging.basicConfig(level=logging.INFO)

# Dataset generation
np.random.seed(42)
moods = ['happy', 'stressed', 'bored', 'sad', 'excited', 'tired', 'anxious', 'content', 'nostalgic', 'hungry']
snacks = [
    'fruit', 'chocolate', 'chips', 'popcorn', 'ice cream', 'pretzels', 'cookies', 'candy', 
    'yogurt', 'granola bar', 'crackers', 'veggies', 'cheese',
    'chin chin', 'kuli kuli', 'plantain chips', 'puff puff', 'akara', 'coconut candy', 
    'kokoro', 'dodo ikire', 'roasted groundnuts', 'suya', 'boli', 'kilishi',
    'buns', 'doughnuts', 'meat pie', 'egg rolls'
]
times_of_day = ['morning', 'afternoon', 'evening', 'midnight']

snack_groups = {
    'nigerian_fried': ['chin chin', 'puff puff', 'akara', 'buns', 'doughnuts', 'meat pie', 'egg rolls'],
    'nigerian_savory': ['suya', 'kuli kuli', 'plantain chips', 'boli', 'kilishi', 'roasted groundnuts'],
    'nigerian_sweet': ['coconut candy', 'dodo ikire', 'chocolate', 'candy', 'cookies', 'ice cream'],
    'savory_snacks': ['chips', 'popcorn', 'pretzels', 'crackers', 'kokoro'],
    'healthy_light': ['fruit', 'yogurt', 'veggies', 'granola bar', 'cheese']
}
snack_to_group = {snack: group for group, snacks in snack_groups.items() for snack in snacks}
group_list = list(snack_groups.keys())

mood_time_group_probs = {
    'happy': {
        'morning': {'nigerian_fried': 0.75, 'nigerian_sweet': 0.2, 'healthy_light': 0.05},
        'afternoon': {'nigerian_fried': 0.75, 'nigerian_sweet': 0.2, 'healthy_light': 0.05},
        'evening': {'nigerian_sweet': 0.75, 'healthy_light': 0.2, 'savory_snacks': 0.05},
        'midnight': {'nigerian_sweet': 0.75, 'nigerian_savory': 0.2, 'savory_snacks': 0.05}
    },
    'stressed': {
        'morning': {'nigerian_sweet': 0.75, 'nigerian_fried': 0.2, 'healthy_light': 0.05},
        'afternoon': {'nigerian_sweet': 0.75, 'nigerian_fried': 0.2, 'savory_snacks': 0.05},
        'evening': {'nigerian_sweet': 0.75, 'savory_snacks': 0.2, 'nigerian_savory': 0.05},
        'midnight': {'nigerian_sweet': 0.75, 'nigerian_savory': 0.2, 'savory_snacks': 0.05}
    },
    'bored': {
        'morning': {'savory_snacks': 0.75, 'nigerian_fried': 0.2, 'healthy_light': 0.05},
        'afternoon': {'savory_snacks': 0.75, 'nigerian_savory': 0.2, 'healthy_light': 0.05},
        'evening': {'savory_snacks': 0.75, 'nigerian_savory': 0.2, 'healthy_light': 0.05},
        'midnight': {'savory_snacks': 0.75, 'nigerian_savory': 0.2, 'healthy_light': 0.05}
    },
    'sad': {
        'morning': {'nigerian_sweet': 0.75, 'nigerian_fried': 0.2, 'healthy_light': 0.05},
        'afternoon': {'nigerian_sweet': 0.75, 'healthy_light': 0.2, 'nigerian_fried': 0.05},
        'evening': {'nigerian_sweet': 0.75, 'healthy_light': 0.2, 'savory_snacks': 0.05},
        'midnight': {'nigerian_sweet': 0.75, 'healthy_light': 0.2, 'nigerian_savory': 0.05}
    },
    'excited': {
        'morning': {'nigerian_fried': 0.75, 'nigerian_sweet': 0.2, 'healthy_light': 0.05},
        'afternoon': {'nigerian_fried': 0.75, 'nigerian_savory': 0.2, 'nigerian_sweet': 0.05},
        'evening': {'nigerian_sweet': 0.75, 'nigerian_savory': 0.2, 'savory_snacks': 0.05},
        'midnight': {'nigerian_savory': 0.75, 'nigerian_sweet': 0.2, 'savory_snacks': 0.05}
    },
    'tired': {
        'morning': {'healthy_light': 0.75, 'nigerian_fried': 0.2, 'nigerian_sweet': 0.05},
        'afternoon': {'healthy_light': 0.75, 'nigerian_fried': 0.2, 'savory_snacks': 0.05},
        'evening': {'healthy_light': 0.75, 'nigerian_sweet': 0.2, 'savory_snacks': 0.05},
        'midnight': {'healthy_light': 0.75, 'nigerian_savory': 0.2, 'nigerian_sweet': 0.05}
    },
    'anxious': {
        'morning': {'savory_snacks': 0.75, 'nigerian_fried': 0.2, 'healthy_light': 0.05},
        'afternoon': {'savory_snacks': 0.75, 'nigerian_savory': 0.2, 'healthy_light': 0.05},
        'evening': {'savory_snacks': 0.75, 'nigerian_savory': 0.2, 'healthy_light': 0.05},
        'midnight': {'savory_snacks': 0.75, 'nigerian_savory': 0.2, 'healthy_light': 0.05}
    },
    'content': {
        'morning': {'healthy_light': 0.75, 'nigerian_fried': 0.2, 'nigerian_sweet': 0.05},
        'afternoon': {'nigerian_savory': 0.75, 'healthy_light': 0.2, 'nigerian_fried': 0.05},
        'evening': {'healthy_light': 0.75, 'nigerian_sweet': 0.2, 'savory_snacks': 0.05},
        'midnight': {'healthy_light': 0.75, 'nigerian_savory': 0.2, 'nigerian_sweet': 0.05}
    },
    'nostalgic': {
        'morning': {'nigerian_sweet': 0.75, 'nigerian_fried': 0.2, 'healthy_light': 0.05},
        'afternoon': {'nigerian_sweet': 0.75, 'nigerian_fried': 0.2, 'healthy_light': 0.05},
        'evening': {'nigerian_sweet': 0.75, 'healthy_light': 0.2, 'savory_snacks': 0.05},
        'midnight': {'nigerian_sweet': 0.75, 'nigerian_savory': 0.2, 'healthy_light': 0.05}
    },
    'hungry': {
        'morning': {'nigerian_fried': 0.75, 'savory_snacks': 0.2, 'healthy_light': 0.05},
        'afternoon': {'nigerian_savory': 0.75, 'nigerian_fried': 0.2, 'savory_snacks': 0.05},
        'evening': {'nigerian_savory': 0.75, 'savory_snacks': 0.2, 'nigerian_sweet': 0.05},
        'midnight': {'nigerian_savory': 0.75, 'savory_snacks': 0.2, 'nigerian_sweet': 0.05}
    }
}

n_samples = 1800
data = {'mood': [], 'time_of_day': [], 'hunger_level': [], 'sentiment': [], 'snack': [], 'snack_group': []}

for _ in range(n_samples):
    mood = np.random.choice(moods, p=[0.15, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.05])
    time = np.random.choice(times_of_day)
    hunger_level = 1.0 if mood == 'hungry' else np.random.uniform(0, 0.8)
    sentiment = round(np.random.uniform(-1, 1), 2)
    
    group_probs = [mood_time_group_probs[str(mood)][time].get(g, 0.01) for g in group_list]
    group = np.random.choice(group_list, p=group_probs / np.sum(group_probs))
    group_snacks = snack_groups[group]
    snack_probs = [
        0.6 if (snack == 'suya' and time in ['evening', 'midnight']) or 
               (snack == 'boli' and time == 'afternoon') or
               (snack in ['puff puff', 'buns', 'doughnuts', 'meat pie', 'egg rolls'] and time in ['morning', 'afternoon']) or
               (snack == 'akara' and time in ['morning', 'midnight']) or
               (snack == 'chin chin' and time in ['morning', 'afternoon', 'midnight'])
        else 0.35 if snack in ['kuli kuli', 'plantain chips', 'popcorn', 'kokoro', 'roasted groundnuts', 'kilishi'] 
        else 0.2 for snack in group_snacks
    ]
    if time not in ['evening', 'midnight'] and 'suya' in group_snacks:
        snack_probs[group_snacks.index('suya')] = 0
    if time != 'afternoon' and 'boli' in group_snacks:
        snack_probs[group_snacks.index('boli')] = 0
    if time not in ['morning', 'afternoon']:
        for snack in ['puff puff', 'buns', 'doughnuts', 'meat pie', 'egg rolls']:
            if snack in group_snacks:
                snack_probs[group_snacks.index(snack)] = 0
    if time not in ['morning', 'midnight'] and 'akara' in group_snacks:
        snack_probs[group_snacks.index('akara')] = 0
    snack_probs = [p / sum(snack_probs) if sum(snack_probs) > 0 else 0.2 for p in snack_probs]
    snack = np.random.choice(group_snacks, p=snack_probs)
    
    data['mood'].append(mood)
    data['time_of_day'].append(time)
    data['hunger_level'].append(hunger_level)
    data['sentiment'].append(sentiment)
    data['snack'].append(snack)
    data['snack_group'].append(group)

df = pd.DataFrame(data)

# Adjust sentiment
df.loc[df['mood'].isin(['happy', 'excited', 'content', 'nostalgic']), 'sentiment'] = df.loc[
    df['mood'].isin(['happy', 'excited', 'content', 'nostalgic']), 'sentiment'].clip(lower=0.2)
df.loc[df['mood'].isin(['stressed', 'sad', 'anxious', 'tired']), 'sentiment'] = df.loc[
    df['mood'].isin(['stressed', 'sad', 'anxious', 'tired']), 'sentiment'].clip(upper=-0.1)
df.loc[df['mood'].isin(['bored', 'hungry']), 'sentiment'] = df.loc[
    df['mood'].isin(['bored', 'hungry']), 'sentiment'].clip(-0.3, 0.3)

# Add snack_type and snack_texture
snack_types = {
    'chin chin': 'sweet', 'puff puff': 'sweet', 'akara': 'savory', 'suya': 'spicy', 
    'kuli kuli': 'spicy', 'plantain chips': 'savory', 'coconut candy': 'sweet', 
    'dodo ikire': 'sweet', 'roasted groundnuts': 'savory', 'fruit': 'light', 
    'yogurt': 'light', 'veggies': 'light', 'granola bar': 'light', 'cheese': 'light',
    'chocolate': 'sweet', 'candy': 'sweet', 'cookies': 'sweet', 'ice cream': 'sweet',
    'chips': 'savory', 'popcorn': 'savory', 'pretzels': 'savory', 'crackers': 'savory',
    'kokoro': 'savory', 'boli': 'savory', 'kilishi': 'spicy',
    'buns': 'sweet', 'doughnuts': 'sweet', 'meat pie': 'savory', 'egg rolls': 'savory'
}
snack_textures = {
    'chin chin': 'crisp', 'puff puff': 'soft', 'akara': 'soft', 'suya': 'chewy', 
    'kuli kuli': 'crisp', 'plantain chips': 'crisp', 'coconut candy': 'chewy', 
    'dodo ikire': 'soft', 'roasted groundnuts': 'crisp', 'fruit': 'soft', 
    'yogurt': 'soft', 'veggies': 'crisp', 'granola bar': 'crisp', 'cheese': 'soft',
    'chocolate': 'soft', 'candy': 'chewy', 'cookies': 'crisp', 'ice cream': 'soft',
    'chips': 'crisp', 'popcorn': 'crisp', 'pretzels': 'crisp', 'crackers': 'crisp',
    'kokoro': 'crisp', 'boli': 'soft', 'kilishi': 'chewy',
    'buns': 'soft', 'doughnuts': 'soft', 'meat pie': 'soft', 'egg rolls': 'soft'
}
df['snack_type'] = df['snack'].map(snack_types)
df['snack_texture'] = df['snack'].map(snack_textures)

# Encode features
le_mood = LabelEncoder()
le_time = LabelEncoder()
le_type = LabelEncoder()
le_texture = LabelEncoder()
le_group = LabelEncoder()

df['mood_encoded'] = le_mood.fit_transform(df['mood'])
df['time_encoded'] = le_time.fit_transform(df['time_of_day'])
df['type_encoded'] = le_type.fit_transform(df['snack_type'])
df['texture_encoded'] = le_texture.fit_transform(df['snack_texture'])
df['group_encoded'] = le_group.fit_transform(df['snack_group'])

X = df[['mood_encoded', 'time_encoded', 'hunger_level', 'sentiment', 'type_encoded', 'texture_encoded']]
y = df['group_encoded']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)

# Train model
param_grid = {
    'n_estimators': [300, 400],
    'max_depth': [12, 15],
    'min_samples_split': [5, 10]
}
model = RandomForestClassifier(class_weight='balanced', random_state=42)
grid_search = GridSearchCV(model, param_grid, cv=5, scoring='accuracy', n_jobs=-1)
grid_search.fit(X_train, y_train)
best_model = grid_search.best_estimator_

# Prediction function
def predict_snack(mood, time_of_day, hunger_level, sentiment, snack_type):
    mood_enc = le_mood.transform([mood])[0]
    time_enc = le_time.transform([time_of_day])[0]
    type_enc = le_type.transform([snack_type])[0]
    type_to_texture = {'sweet': 'soft', 'savory': 'crisp', 'spicy': 'chewy', 'light': 'soft'}
    texture_enc = le_texture.transform([type_to_texture[snack_type]])[0]
    input_data = np.array([[mood_enc, time_enc, hunger_level, sentiment, type_enc, texture_enc]])
    pred = best_model.predict(input_data)
    group = le_group.inverse_transform(pred)[0]
    group_snacks = snack_groups[group]
    snack_probs = [
        0.6 if (snack == 'suya' and time_of_day in ['evening', 'midnight']) or 
               (snack == 'boli' and time_of_day == 'afternoon') or
               (snack in ['puff puff', 'buns', 'doughnuts', 'meat pie', 'egg rolls'] and time_of_day in ['morning', 'afternoon']) or
               (snack == 'akara' and time_of_day in ['morning', 'midnight']) or
               (snack == 'chin chin' and time_of_day in ['morning', 'afternoon', 'midnight'])
        else 0.35 if snack in ['kuli kuli', 'plantain chips', 'popcorn', 'kokoro', 'roasted groundnuts', 'kilishi'] 
        else 0.2 for snack in group_snacks
    ]
    if time_of_day not in ['evening', 'midnight'] and 'suya' in group_snacks:
        snack_probs[group_snacks.index('suya')] = 0
    if time_of_day != 'afternoon' and 'boli' in group_snacks:
        snack_probs[group_snacks.index('boli')] = 0
    if time_of_day not in ['morning', 'afternoon']:
        for snack in ['puff puff', 'buns', 'doughnuts', 'meat pie', 'egg rolls']:
            if snack in group_snacks:
                snack_probs[group_snacks.index(snack)] = 0
    if time_of_day not in ['morning', 'midnight'] and 'akara' in group_snacks:
        snack_probs[group_snacks.index('akara')] = 0
    snack_probs = [p / sum(snack_probs) if sum(snack_probs) > 0 else 0.2 for p in snack_probs]
    snack = np.random.choice(group_snacks, p=snack_probs)
    return f"You should try {snack}!", snack

# Gradio interface
with gr.Blocks(css="""
    body {background-color: #FFF8E7; font-family: 'Poppins', sans-serif;}
    .gradio-container {max-width: 800px; margin: auto; padding: 20px;}
    h1 {color: #4A2C2A; text-align: center; font-size: 2.5em; margin-bottom: 10px;}
    p {color: #4A2C2A; text-align: center; font-size: 1.2em;}
    .gr-button {background-color: #FF4500 !important; color: white !important; border-radius: 25px !important; padding: 10px 20px !important; font-weight: bold !important;}
    .gr-button:hover {background-color: #E03C00 !important;}
    .gr-textbox, .gr-dropdown, .gr-slider {border: 2px solid #D4A373 !important; border-radius: 10px !important; padding: 10px !important;}
    .gr-image {border-radius: 15px; margin: auto; max-width: 200px;}
    .footer {text-align: center; color: #808080; font-size: 0.9em; margin-top: 20px;}
""") as demo:
    gr.HTML("""
        <div style='background: linear-gradient(to right, #D4A373, #FEE440); padding: 20px; border-radius: 15px; text-align: center;'>
            <h1>Snack Predictor πŸͺ</h1>
            <p>Tell us your vibe, and we'll find your perfect snack! Powered by ML (~97% accurate)</p>
        </div>
    """)
    gr.HTML("<p style='text-align: center; color: #4A2C2A; margin-top: 15px;'>Welcome to your snack adventure! πŸ˜‹</p>")
    
    with gr.Row():
        with gr.Column(scale=1):
            mood = gr.Dropdown(choices=moods, label="Mood", value="happy", elem_classes="gr-dropdown")
            time_of_day = gr.Dropdown(choices=times_of_day, label="Time of Day", value="morning", elem_classes="gr-dropdown")
            hunger_level = gr.Slider(minimum=0, maximum=1, step=0.1, label="Hunger Level (0 to 1)", value=0.5, elem_classes="gr-slider")
            sentiment = gr.Slider(minimum=-1, maximum=1, step=0.1, label="Sentiment (-1 to 1)", value=0.0, elem_classes="gr-slider")
            snack_type = gr.Dropdown(choices=['sweet', 'savory', 'spicy', 'light'], label="Snack Type", value="sweet", elem_classes="gr-dropdown")
            predict_btn = gr.Button("Find My Snack!", variant="primary", elem_classes="gr-button")
        
        with gr.Column(scale=1):
            output_text = gr.Textbox(label="Your Snack Recommendation", elem_classes="gr-textbox")
            output_image = gr.Image(label="Snack Preview", elem_classes="gr-image")
    
    def predict_and_show(mood, time_of_day, hunger_level, sentiment, snack_type):
        text, snack = predict_snack(mood, time_of_day, hunger_level, sentiment, snack_type)
        image_path = f"assets/{snack.replace(' ', '_')}.jpeg"
        if not os.path.exists(image_path):
            logging.info(f"Image not found: {image_path}")
            image_path = f"assets/{snack.replace(' ', '_')}.png"  # Check for .png as fallback
            if not os.path.exists(image_path):
                logging.info(f"PNG fallback not found: {image_path}, using placeholder")
                image_path = "assets/placeholder.jpeg"  # Final fallback
                if not os.path.exists(image_path):
                    logging.error(f"Placeholder not found: {image_path}")
        return text, image_path
    
    predict_btn.click(
        fn=predict_and_show,
        inputs=[mood, time_of_day, hunger_level, sentiment, snack_type],
        outputs=[output_text, output_image]
    )
    
    gr.HTML("""
        <div class='footer'>
            <p>Built with ❀️ by @teganmosi  πŸš€</p>
            <p>Follow my #WeeklyMLProjects for more! 🍟</p>
        </div>
    """)

demo.launch()