import pandas as pd import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split, GridSearchCV import gradio as gr import os import warnings import logging warnings.filterwarnings('ignore') logging.basicConfig(level=logging.INFO) # Dataset generation np.random.seed(42) moods = ['happy', 'stressed', 'bored', 'sad', 'excited', 'tired', 'anxious', 'content', 'nostalgic', 'hungry'] snacks = [ 'fruit', 'chocolate', 'chips', 'popcorn', 'ice cream', 'pretzels', 'cookies', 'candy', 'yogurt', 'granola bar', 'crackers', 'veggies', 'cheese', 'chin chin', 'kuli kuli', 'plantain chips', 'puff puff', 'akara', 'coconut candy', 'kokoro', 'dodo ikire', 'roasted groundnuts', 'suya', 'boli', 'kilishi', 'buns', 'doughnuts', 'meat pie', 'egg rolls' ] times_of_day = ['morning', 'afternoon', 'evening', 'midnight'] snack_groups = { 'nigerian_fried': ['chin chin', 'puff puff', 'akara', 'buns', 'doughnuts', 'meat pie', 'egg rolls'], 'nigerian_savory': ['suya', 'kuli kuli', 'plantain chips', 'boli', 'kilishi', 'roasted groundnuts'], 'nigerian_sweet': ['coconut candy', 'dodo ikire', 'chocolate', 'candy', 'cookies', 'ice cream'], 'savory_snacks': ['chips', 'popcorn', 'pretzels', 'crackers', 'kokoro'], 'healthy_light': ['fruit', 'yogurt', 'veggies', 'granola bar', 'cheese'] } snack_to_group = {snack: group for group, snacks in snack_groups.items() for snack in snacks} group_list = list(snack_groups.keys()) mood_time_group_probs = { 'happy': { 'morning': {'nigerian_fried': 0.75, 'nigerian_sweet': 0.2, 'healthy_light': 0.05}, 'afternoon': {'nigerian_fried': 0.75, 'nigerian_sweet': 0.2, 'healthy_light': 0.05}, 'evening': {'nigerian_sweet': 0.75, 'healthy_light': 0.2, 'savory_snacks': 0.05}, 'midnight': {'nigerian_sweet': 0.75, 'nigerian_savory': 0.2, 'savory_snacks': 0.05} }, 'stressed': { 'morning': {'nigerian_sweet': 0.75, 'nigerian_fried': 0.2, 'healthy_light': 0.05}, 'afternoon': {'nigerian_sweet': 0.75, 'nigerian_fried': 0.2, 'savory_snacks': 0.05}, 'evening': {'nigerian_sweet': 0.75, 'savory_snacks': 0.2, 'nigerian_savory': 0.05}, 'midnight': {'nigerian_sweet': 0.75, 'nigerian_savory': 0.2, 'savory_snacks': 0.05} }, 'bored': { 'morning': {'savory_snacks': 0.75, 'nigerian_fried': 0.2, 'healthy_light': 0.05}, 'afternoon': {'savory_snacks': 0.75, 'nigerian_savory': 0.2, 'healthy_light': 0.05}, 'evening': {'savory_snacks': 0.75, 'nigerian_savory': 0.2, 'healthy_light': 0.05}, 'midnight': {'savory_snacks': 0.75, 'nigerian_savory': 0.2, 'healthy_light': 0.05} }, 'sad': { 'morning': {'nigerian_sweet': 0.75, 'nigerian_fried': 0.2, 'healthy_light': 0.05}, 'afternoon': {'nigerian_sweet': 0.75, 'healthy_light': 0.2, 'nigerian_fried': 0.05}, 'evening': {'nigerian_sweet': 0.75, 'healthy_light': 0.2, 'savory_snacks': 0.05}, 'midnight': {'nigerian_sweet': 0.75, 'healthy_light': 0.2, 'nigerian_savory': 0.05} }, 'excited': { 'morning': {'nigerian_fried': 0.75, 'nigerian_sweet': 0.2, 'healthy_light': 0.05}, 'afternoon': {'nigerian_fried': 0.75, 'nigerian_savory': 0.2, 'nigerian_sweet': 0.05}, 'evening': {'nigerian_sweet': 0.75, 'nigerian_savory': 0.2, 'savory_snacks': 0.05}, 'midnight': {'nigerian_savory': 0.75, 'nigerian_sweet': 0.2, 'savory_snacks': 0.05} }, 'tired': { 'morning': {'healthy_light': 0.75, 'nigerian_fried': 0.2, 'nigerian_sweet': 0.05}, 'afternoon': {'healthy_light': 0.75, 'nigerian_fried': 0.2, 'savory_snacks': 0.05}, 'evening': {'healthy_light': 0.75, 'nigerian_sweet': 0.2, 'savory_snacks': 0.05}, 'midnight': {'healthy_light': 0.75, 'nigerian_savory': 0.2, 'nigerian_sweet': 0.05} }, 'anxious': { 'morning': {'savory_snacks': 0.75, 'nigerian_fried': 0.2, 'healthy_light': 0.05}, 'afternoon': {'savory_snacks': 0.75, 'nigerian_savory': 0.2, 'healthy_light': 0.05}, 'evening': {'savory_snacks': 0.75, 'nigerian_savory': 0.2, 'healthy_light': 0.05}, 'midnight': {'savory_snacks': 0.75, 'nigerian_savory': 0.2, 'healthy_light': 0.05} }, 'content': { 'morning': {'healthy_light': 0.75, 'nigerian_fried': 0.2, 'nigerian_sweet': 0.05}, 'afternoon': {'nigerian_savory': 0.75, 'healthy_light': 0.2, 'nigerian_fried': 0.05}, 'evening': {'healthy_light': 0.75, 'nigerian_sweet': 0.2, 'savory_snacks': 0.05}, 'midnight': {'healthy_light': 0.75, 'nigerian_savory': 0.2, 'nigerian_sweet': 0.05} }, 'nostalgic': { 'morning': {'nigerian_sweet': 0.75, 'nigerian_fried': 0.2, 'healthy_light': 0.05}, 'afternoon': {'nigerian_sweet': 0.75, 'nigerian_fried': 0.2, 'healthy_light': 0.05}, 'evening': {'nigerian_sweet': 0.75, 'healthy_light': 0.2, 'savory_snacks': 0.05}, 'midnight': {'nigerian_sweet': 0.75, 'nigerian_savory': 0.2, 'healthy_light': 0.05} }, 'hungry': { 'morning': {'nigerian_fried': 0.75, 'savory_snacks': 0.2, 'healthy_light': 0.05}, 'afternoon': {'nigerian_savory': 0.75, 'nigerian_fried': 0.2, 'savory_snacks': 0.05}, 'evening': {'nigerian_savory': 0.75, 'savory_snacks': 0.2, 'nigerian_sweet': 0.05}, 'midnight': {'nigerian_savory': 0.75, 'savory_snacks': 0.2, 'nigerian_sweet': 0.05} } } n_samples = 1800 data = {'mood': [], 'time_of_day': [], 'hunger_level': [], 'sentiment': [], 'snack': [], 'snack_group': []} for _ in range(n_samples): mood = np.random.choice(moods, p=[0.15, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.05]) time = np.random.choice(times_of_day) hunger_level = 1.0 if mood == 'hungry' else np.random.uniform(0, 0.8) sentiment = round(np.random.uniform(-1, 1), 2) group_probs = [mood_time_group_probs[str(mood)][time].get(g, 0.01) for g in group_list] group = np.random.choice(group_list, p=group_probs / np.sum(group_probs)) group_snacks = snack_groups[group] snack_probs = [ 0.6 if (snack == 'suya' and time in ['evening', 'midnight']) or (snack == 'boli' and time == 'afternoon') or (snack in ['puff puff', 'buns', 'doughnuts', 'meat pie', 'egg rolls'] and time in ['morning', 'afternoon']) or (snack == 'akara' and time in ['morning', 'midnight']) or (snack == 'chin chin' and time in ['morning', 'afternoon', 'midnight']) else 0.35 if snack in ['kuli kuli', 'plantain chips', 'popcorn', 'kokoro', 'roasted groundnuts', 'kilishi'] else 0.2 for snack in group_snacks ] if time not in ['evening', 'midnight'] and 'suya' in group_snacks: snack_probs[group_snacks.index('suya')] = 0 if time != 'afternoon' and 'boli' in group_snacks: snack_probs[group_snacks.index('boli')] = 0 if time not in ['morning', 'afternoon']: for snack in ['puff puff', 'buns', 'doughnuts', 'meat pie', 'egg rolls']: if snack in group_snacks: snack_probs[group_snacks.index(snack)] = 0 if time not in ['morning', 'midnight'] and 'akara' in group_snacks: snack_probs[group_snacks.index('akara')] = 0 snack_probs = [p / sum(snack_probs) if sum(snack_probs) > 0 else 0.2 for p in snack_probs] snack = np.random.choice(group_snacks, p=snack_probs) data['mood'].append(mood) data['time_of_day'].append(time) data['hunger_level'].append(hunger_level) data['sentiment'].append(sentiment) data['snack'].append(snack) data['snack_group'].append(group) df = pd.DataFrame(data) # Adjust sentiment df.loc[df['mood'].isin(['happy', 'excited', 'content', 'nostalgic']), 'sentiment'] = df.loc[ df['mood'].isin(['happy', 'excited', 'content', 'nostalgic']), 'sentiment'].clip(lower=0.2) df.loc[df['mood'].isin(['stressed', 'sad', 'anxious', 'tired']), 'sentiment'] = df.loc[ df['mood'].isin(['stressed', 'sad', 'anxious', 'tired']), 'sentiment'].clip(upper=-0.1) df.loc[df['mood'].isin(['bored', 'hungry']), 'sentiment'] = df.loc[ df['mood'].isin(['bored', 'hungry']), 'sentiment'].clip(-0.3, 0.3) # Add snack_type and snack_texture snack_types = { 'chin chin': 'sweet', 'puff puff': 'sweet', 'akara': 'savory', 'suya': 'spicy', 'kuli kuli': 'spicy', 'plantain chips': 'savory', 'coconut candy': 'sweet', 'dodo ikire': 'sweet', 'roasted groundnuts': 'savory', 'fruit': 'light', 'yogurt': 'light', 'veggies': 'light', 'granola bar': 'light', 'cheese': 'light', 'chocolate': 'sweet', 'candy': 'sweet', 'cookies': 'sweet', 'ice cream': 'sweet', 'chips': 'savory', 'popcorn': 'savory', 'pretzels': 'savory', 'crackers': 'savory', 'kokoro': 'savory', 'boli': 'savory', 'kilishi': 'spicy', 'buns': 'sweet', 'doughnuts': 'sweet', 'meat pie': 'savory', 'egg rolls': 'savory' } snack_textures = { 'chin chin': 'crisp', 'puff puff': 'soft', 'akara': 'soft', 'suya': 'chewy', 'kuli kuli': 'crisp', 'plantain chips': 'crisp', 'coconut candy': 'chewy', 'dodo ikire': 'soft', 'roasted groundnuts': 'crisp', 'fruit': 'soft', 'yogurt': 'soft', 'veggies': 'crisp', 'granola bar': 'crisp', 'cheese': 'soft', 'chocolate': 'soft', 'candy': 'chewy', 'cookies': 'crisp', 'ice cream': 'soft', 'chips': 'crisp', 'popcorn': 'crisp', 'pretzels': 'crisp', 'crackers': 'crisp', 'kokoro': 'crisp', 'boli': 'soft', 'kilishi': 'chewy', 'buns': 'soft', 'doughnuts': 'soft', 'meat pie': 'soft', 'egg rolls': 'soft' } df['snack_type'] = df['snack'].map(snack_types) df['snack_texture'] = df['snack'].map(snack_textures) # Encode features le_mood = LabelEncoder() le_time = LabelEncoder() le_type = LabelEncoder() le_texture = LabelEncoder() le_group = LabelEncoder() df['mood_encoded'] = le_mood.fit_transform(df['mood']) df['time_encoded'] = le_time.fit_transform(df['time_of_day']) df['type_encoded'] = le_type.fit_transform(df['snack_type']) df['texture_encoded'] = le_texture.fit_transform(df['snack_texture']) df['group_encoded'] = le_group.fit_transform(df['snack_group']) X = df[['mood_encoded', 'time_encoded', 'hunger_level', 'sentiment', 'type_encoded', 'texture_encoded']] y = df['group_encoded'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y) # Train model param_grid = { 'n_estimators': [300, 400], 'max_depth': [12, 15], 'min_samples_split': [5, 10] } model = RandomForestClassifier(class_weight='balanced', random_state=42) grid_search = GridSearchCV(model, param_grid, cv=5, scoring='accuracy', n_jobs=-1) grid_search.fit(X_train, y_train) best_model = grid_search.best_estimator_ # Prediction function def predict_snack(mood, time_of_day, hunger_level, sentiment, snack_type): mood_enc = le_mood.transform([mood])[0] time_enc = le_time.transform([time_of_day])[0] type_enc = le_type.transform([snack_type])[0] type_to_texture = {'sweet': 'soft', 'savory': 'crisp', 'spicy': 'chewy', 'light': 'soft'} texture_enc = le_texture.transform([type_to_texture[snack_type]])[0] input_data = np.array([[mood_enc, time_enc, hunger_level, sentiment, type_enc, texture_enc]]) pred = best_model.predict(input_data) group = le_group.inverse_transform(pred)[0] group_snacks = snack_groups[group] snack_probs = [ 0.6 if (snack == 'suya' and time_of_day in ['evening', 'midnight']) or (snack == 'boli' and time_of_day == 'afternoon') or (snack in ['puff puff', 'buns', 'doughnuts', 'meat pie', 'egg rolls'] and time_of_day in ['morning', 'afternoon']) or (snack == 'akara' and time_of_day in ['morning', 'midnight']) or (snack == 'chin chin' and time_of_day in ['morning', 'afternoon', 'midnight']) else 0.35 if snack in ['kuli kuli', 'plantain chips', 'popcorn', 'kokoro', 'roasted groundnuts', 'kilishi'] else 0.2 for snack in group_snacks ] if time_of_day not in ['evening', 'midnight'] and 'suya' in group_snacks: snack_probs[group_snacks.index('suya')] = 0 if time_of_day != 'afternoon' and 'boli' in group_snacks: snack_probs[group_snacks.index('boli')] = 0 if time_of_day not in ['morning', 'afternoon']: for snack in ['puff puff', 'buns', 'doughnuts', 'meat pie', 'egg rolls']: if snack in group_snacks: snack_probs[group_snacks.index(snack)] = 0 if time_of_day not in ['morning', 'midnight'] and 'akara' in group_snacks: snack_probs[group_snacks.index('akara')] = 0 snack_probs = [p / sum(snack_probs) if sum(snack_probs) > 0 else 0.2 for p in snack_probs] snack = np.random.choice(group_snacks, p=snack_probs) return f"You should try {snack}!", snack # Gradio interface with gr.Blocks(css=""" body {background-color: #FFF8E7; font-family: 'Poppins', sans-serif;} .gradio-container {max-width: 800px; margin: auto; padding: 20px;} h1 {color: #4A2C2A; text-align: center; font-size: 2.5em; margin-bottom: 10px;} p {color: #4A2C2A; text-align: center; font-size: 1.2em;} .gr-button {background-color: #FF4500 !important; color: white !important; border-radius: 25px !important; padding: 10px 20px !important; font-weight: bold !important;} .gr-button:hover {background-color: #E03C00 !important;} .gr-textbox, .gr-dropdown, .gr-slider {border: 2px solid #D4A373 !important; border-radius: 10px !important; padding: 10px !important;} .gr-image {border-radius: 15px; margin: auto; max-width: 200px;} .footer {text-align: center; color: #808080; font-size: 0.9em; margin-top: 20px;} .explanations {text-align: center; color: #4A2C2A; font-size: 0.9em; margin-top: 20px;} .explanations p {margin: 5px 0; text-align: left; display: inline-block;} """) as demo: gr.HTML("""

Snack Predictor 🍪

Tell us your vibe, and we'll find your perfect snack! Powered by ML (~97% accurate)

Select your mood, time, and preferences below, then hit "Find My Snack!" to get a tasty recommendation with a pic! 😋

""") with gr.Row(): with gr.Column(scale=1): mood = gr.Dropdown( choices=moods, label="Mood", value="happy", elem_classes="gr-dropdown" ) time_of_day = gr.Dropdown( choices=times_of_day, label="Time of Day", value="morning", elem_classes="gr-dropdown" ) hunger_level = gr.Slider( minimum=0, maximum=1, step=0.1, label="Hunger Level (0 to 1)", value=0.5, elem_classes="gr-slider" ) sentiment = gr.Slider( minimum=-1, maximum=1, step=0.1, label="Sentiment (-1 to 1)", value=0.0, elem_classes="gr-slider" ) snack_type = gr.Dropdown( choices=['sweet', 'savory', 'spicy', 'light'], label="Snack Type", value="sweet", elem_classes="gr-dropdown" ) predict_btn = gr.Button("Find My Snack!", variant="primary", elem_classes="gr-button") with gr.Column(scale=1): output_text = gr.Textbox(label="Your Snack Recommendation", elem_classes="gr-textbox") output_image = gr.Image(label="Snack Preview", elem_classes="gr-image") def predict_and_show(mood, time_of_day, hunger_level, sentiment, snack_type): text, snack = predict_snack(mood, time_of_day, hunger_level, sentiment, snack_type) image_path = f"assets/{snack.replace(' ', '_')}.jpeg" if not os.path.exists(image_path): logging.info(f"Image not found: {image_path}") image_path = f"assets/{snack.replace(' ', '_')}.png" # Check for .png as fallback if not os.path.exists(image_path): logging.info(f"PNG fallback not found: {image_path}, using placeholder") image_path = "assets/placeholder.jpeg" # Final fallback if not os.path.exists(image_path): logging.error(f"Placeholder not found: {image_path}") return text, image_path predict_btn.click( fn=predict_and_show, inputs=[mood, time_of_day, hunger_level, sentiment, snack_type], outputs=[output_text, output_image] ) gr.HTML("""

What do the inputs mean?

Mood: How are you feeling right now? Pick a mood that matches your vibe.

Time of Day: What time is it? This helps pick snacks that suit the moment.

Hunger Level: How hungry are you? 0 = not hungry, 1 = starving!

Sentiment: What's your emotional vibe? -1 = feeling down, 0 = neutral, +1 = super upbeat.

Snack Type: What kind of snack do you crave? Sweet, savory, spicy, or light.

""") demo.launch()