File size: 28,205 Bytes
9867d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
import os
import tempfile
import gradio as gr
import torch
import torchaudio
from loguru import logger
from typing import Optional, Tuple
import random
import numpy as np

from hunyuanvideo_foley.utils.model_utils import load_model
from hunyuanvideo_foley.utils.feature_utils import feature_process
from hunyuanvideo_foley.utils.model_utils import denoise_process
from hunyuanvideo_foley.utils.media_utils import merge_audio_video

# Global variables for model storage
model_dict = None
cfg = None
device = None

# need to modify the model path
MODEL_PATH = os.environ.get("HIFI_FOLEY_MODEL_PATH", "./pretrained_models/")
CONFIG_PATH = "configs/hunyuanvideo-foley-xxl.yaml"

def setup_device(device_str: str = "auto", gpu_id: int = 0) -> torch.device:
    """Setup computing device"""
    if device_str == "auto":
        if torch.cuda.is_available():
            device = torch.device(f"cuda:{gpu_id}")
            logger.info(f"Using CUDA device: {device}")
        elif torch.backends.mps.is_available():
            device = torch.device("mps")
            logger.info("Using MPS device")
        else:
            device = torch.device("cpu")
            logger.info("Using CPU device")
    else:
        if device_str == "cuda":
            device = torch.device(f"cuda:{gpu_id}")
        else:
            device = torch.device(device_str)
        logger.info(f"Using specified device: {device}")
    
    return device

def auto_load_models() -> str:
    """Automatically load preset models"""
    global model_dict, cfg, device
    
    try:
        if not os.path.exists(MODEL_PATH):
            return f"❌ Model file not found: {MODEL_PATH}"
        if not os.path.exists(CONFIG_PATH):
            return f"❌ Config file not found: {CONFIG_PATH}"
        
        # Use GPU by default
        device = setup_device("auto", 0)
        
        # Load model
        logger.info("Auto-loading model...")
        logger.info(f"Model path: {MODEL_PATH}")
        logger.info(f"Config path: {CONFIG_PATH}")
        
        model_dict, cfg = load_model(MODEL_PATH, CONFIG_PATH, device)
        
        logger.info("βœ… Model loaded successfully!")
        return "βœ… Model loaded successfully!"
        
    except Exception as e:
        logger.error(f"Model loading failed: {str(e)}")
        return f"❌ Model loading failed: {str(e)}"

def infer_single_video(
    video_file, 
    text_prompt: str, 
    guidance_scale: float = 4.5, 
    num_inference_steps: int = 50,
    sample_nums: int = 1
) -> Tuple[list, str]:
    """Single video inference"""
    global model_dict, cfg, device
    
    if model_dict is None or cfg is None:
        return [], "❌ Please load the model first!"
    
    if video_file is None:
        return [], "❌ Please upload a video file!"
    
    # Allow empty text prompt, use empty string if no prompt provided
    if text_prompt is None:
        text_prompt = ""
    text_prompt = text_prompt.strip()
    
    try:
        logger.info(f"Processing video: {video_file}")
        logger.info(f"Text prompt: {text_prompt}")
        
        # Feature processing
        visual_feats, text_feats, audio_len_in_s = feature_process(
            video_file,
            text_prompt,
            model_dict,
            cfg
        )
        
        # Denoising process to generate multiple audio samples
        # Note: The model now generates sample_nums audio samples per inference
        # The denoise_process function returns audio with shape [batch_size, channels, samples]
        logger.info(f"Generating {sample_nums} audio samples...")
        audio, sample_rate = denoise_process(
            visual_feats,
            text_feats,
            audio_len_in_s,
            model_dict,
            cfg,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            batch_size=sample_nums
        )
        
        # Create temporary files to save results
        temp_dir = tempfile.mkdtemp()
        video_outputs = []
        
        # Process each generated audio sample
        for i in range(sample_nums):
            # Save audio file
            audio_output = os.path.join(temp_dir, f"generated_audio_{i+1}.wav")
            torchaudio.save(audio_output, audio[i], sample_rate)
            
            # Merge video and audio
            video_output = os.path.join(temp_dir, f"video_with_audio_{i+1}.mp4")
            merge_audio_video(audio_output, video_file, video_output)
            video_outputs.append(video_output)
        
        logger.info(f"Inference completed! Generated {sample_nums} samples.")
        return video_outputs, f"βœ… Generated {sample_nums} audio sample(s) successfully!"
        
    except Exception as e:
        logger.error(f"Inference failed: {str(e)}")
        return [], f"❌ Inference failed: {str(e)}"

def update_video_outputs(video_list, status_msg):
    """Update video outputs based on the number of generated samples"""
    # Initialize all outputs as None
    outputs = [None] * 6
    
    # Set values based on generated videos
    for i, video_path in enumerate(video_list[:6]):  # Max 6 samples
        outputs[i] = video_path
    
    # Return all outputs plus status message
    return tuple(outputs + [status_msg])

def create_gradio_interface():
    """Create Gradio interface"""
    
    # Custom CSS for beautiful interface with better contrast
    css = """
    .gradio-container {
        font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif;
        background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
        min-height: 100vh;
    }
    
    .main-header {
        text-align: center;
        padding: 2rem 0;
        background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
        border-radius: 20px;
        margin-bottom: 2rem;
        box-shadow: 0 8px 32px rgba(0,0,0,0.15);
    }
    
    .main-header h1 {
        color: white;
        font-size: 3rem;
        font-weight: 700;
        margin-bottom: 0.5rem;
        text-shadow: 0 2px 10px rgba(0,0,0,0.3);
    }
    
    .main-header p {
        color: rgba(255, 255, 255, 0.95);
        font-size: 1.2rem;
        font-weight: 300;
    }
    
    .status-card {
        background: white;
        border-radius: 15px;
        padding: 1rem;
        margin-bottom: 1.5rem;
        border: 1px solid #e1e5e9;
        box-shadow: 0 4px 20px rgba(0,0,0,0.08);
    }
    
    .status-card label {
        color: #2d3748 !important;
        font-weight: 600 !important;
    }
    
    .usage-guide h3 {
        color: #2d3748 !important;
        font-weight: 600 !important;
        margin-bottom: 0.5rem !important;
    }
    
    .usage-guide p {
        color: #4a5568 !important;
        font-size: 1rem !important;
        line-height: 1.6 !important;
        margin: 0.5rem 0 !important;
    }
    
    .usage-guide strong {
        color: #1a202c !important;
        font-weight: 700 !important;
    }
    
    .usage-guide em {
        color: #1a202c !important;
        font-weight: 700 !important;
        font-style: normal !important;
    }
    
    .main-interface {
        margin-bottom: 2rem;
    }
    
    .input-section {
        background: white;
        border-radius: 20px;
        padding: 2rem;
        margin-right: 1rem;
        box-shadow: 0 8px 32px rgba(0,0,0,0.1);
        border: 1px solid #e1e5e9;
    }
    
    .input-section h3 {
        color: #2d3748 !important;
        font-weight: 600 !important;
        margin-bottom: 1rem !important;
    }
    
    .input-section label {
        color: #4a5568 !important;
        font-weight: 500 !important;
    }
    
    .output-section {
        background: white;
        border-radius: 20px;
        padding: 2rem;
        margin-left: 1rem;
        box-shadow: 0 8px 32px rgba(0,0,0,0.1);
        border: 1px solid #e1e5e9;
    }
    
    .output-section h3 {
        color: #2d3748 !important;
        font-weight: 600 !important;
        margin-bottom: 1rem !important;
    }
    
    .output-section label {
        color: #4a5568 !important;
        font-weight: 500 !important;
    }
    
    .examples-section h3 {
        color: #2d3748 !important;
        font-weight: 600 !important;
        margin-bottom: 1.5rem !important;
    }
    
    .generate-btn {
        background: linear-gradient(45deg, #667eea, #764ba2) !important;
        border: none !important;
        color: white !important;
        font-weight: 600 !important;
        font-size: 1.1rem !important;
        padding: 12px 30px !important;
        border-radius: 25px !important;
        box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4) !important;
        transition: all 0.3s ease !important;
    }
    
    .generate-btn:hover {
        transform: translateY(-2px) !important;
        box-shadow: 0 8px 25px rgba(102, 126, 234, 0.6) !important;
    }
    

    
    .examples-section {
        background: white;
        border-radius: 20px;
        padding: 2rem;
        margin-top: 2rem;
        box-shadow: 0 8px 32px rgba(0,0,0,0.1);
        border: 1px solid #e1e5e9;
    }
    
    .examples-section p {
        color: #4a5568 !important;
        margin-bottom: 1rem !important;
    }
    
    .example-row {
        background: #f8fafc;
        border: 1px solid #e2e8f0;
        border-radius: 15px;
        padding: 1.5rem;
        margin: 1rem 0;
        transition: all 0.3s ease;
        align-items: center;
    }
    
    .example-row:hover {
        border-color: #667eea;
        transform: translateY(-2px);
        box-shadow: 0 4px 20px rgba(102, 126, 234, 0.15);
    }
    
    .example-row .markdown {
        color: #2d3748 !important;
    }
    
    .example-row .markdown p {
        color: #2d3748 !important;
        margin: 0.5rem 0 !important;
        line-height: 1.5 !important;
    }
    
    .example-row .markdown strong {
        color: #1a202c !important;
        font-weight: 600 !important;
    }
    
    /* Example grid layout styles */
    .example-grid-row {
        margin: 1rem 0;
        gap: 1rem;
    }
    
    .example-item {
        background: #f8fafc;
        border: 1px solid #e2e8f0;
        border-radius: 15px;
        padding: 1rem;
        transition: all 0.3s ease;
        margin: 0.25rem;
        max-width: 250px;
        margin-left: auto;
        margin-right: auto;
    }
    
    .example-item:hover {
        border-color: #667eea;
        transform: translateY(-2px);
        box-shadow: 0 4px 20px rgba(102, 126, 234, 0.15);
    }
    
    .example-caption {
        margin: 0.5rem 0 !important;
        min-height: 2.8rem !important;
        display: flex !important;
        align-items: flex-start !important;
    }
    
    .example-caption p {
        color: #2d3748 !important;
        font-size: 0.9rem !important;
        line-height: 1.4 !important;
        margin: 0.5rem 0 !important;
    }
    
    /* Multi-video gallery styles */
    .additional-samples {
        margin-top: 1rem;
        gap: 0.5rem;
    }
    
    .additional-samples .gradio-video {
        border-radius: 10px;
        overflow: hidden;
    }
    
    /* Video gallery responsive layout */
    .video-gallery {
        display: grid;
        gap: 1rem;
        margin-top: 1rem;
    }
    
    .video-gallery.single {
        grid-template-columns: 1fr;
    }
    
    .video-gallery.dual {
        grid-template-columns: 1fr 1fr;
    }
    
    .video-gallery.multi {
        grid-template-columns: repeat(2, 1fr);
        grid-template-rows: auto auto auto;
    }
    
    .footer-text {
        color: #718096 !important;
        text-align: center;
        padding: 2rem;
        font-size: 0.9rem;
    }
    
    /* Video component styling for consistent size */
    .input-section video,
    .output-section video,
    .example-row video {
        width: 100% !important;
        height: 300px !important;
        object-fit: contain !important;
        border-radius: 10px !important;
        background-color: #000 !important;
    }
    
    .example-row video {
        height: 150px !important;
    }
    
    /* Fix for additional samples video display */
    .additional-samples video {
        height: 150px !important;
        object-fit: contain !important;
        border-radius: 10px !important;
        background-color: #000 !important;
    }
    
    .additional-samples .gradio-video {
        border-radius: 10px !important;
        overflow: hidden !important;
        background-color: #000 !important;
    }
    
    .additional-samples .gradio-video > div {
        background-color: #000 !important;
        border-radius: 10px !important;
    }
    
    /* Video container styling */
    .input-section .video-container,
    .output-section .video-container,
    .example-row .video-container {
        background-color: #000 !important;
        border-radius: 10px !important;
        display: flex !important;
        align-items: center !important;
        justify-content: center !important;
        overflow: hidden !important;
    }
    
    /* Ensure proper alignment */
    .example-row {
        display: flex !important;
        align-items: stretch !important;
    }
    
    .example-row > div {
        display: flex !important;
        flex-direction: column !important;
        justify-content: center !important;
    }
    
    /* Video wrapper for better control */
    .video-wrapper {
        position: relative !important;
        width: 100% !important;
        background: #000 !important;
        border-radius: 10px !important;
        overflow: hidden !important;
        display: flex !important;
        align-items: center !important;
        justify-content: center !important;
    }
    """
    
    with gr.Blocks(css=css, title="HunyuanVideo-Foley") as app:
        
        # Main header
        with gr.Column(elem_classes=["main-header"]):
            gr.HTML("""
            <h1>🎡 HunyuanVideo-Foley</h1>
            <p>Text-Video-to-Audio Synthesis: Generate realistic audio from video and text descriptions</p>
            """)
        
        # Usage Guide
        with gr.Column(elem_classes=["status-card"]):
            gr.Markdown("""
            ### πŸ“‹ Quick Start Guide
            **1.** Upload your video file\t**2.** Add optional text description\t**3.** Adjust sample numbers (1-6)\t**4.** Click Generate Audio
            
            πŸ’‘ For quick start, you can load the prepared examples by clicking the button.
            """, elem_classes=["usage-guide"])
        
        # Main inference interface - Input and Results side by side
        with gr.Row(elem_classes=["main-interface"]):
            # Input section
            with gr.Column(scale=1, elem_classes=["input-section"]):
                gr.Markdown("### πŸ“Ή Video Input")
                
                video_input = gr.Video(
                    label="Upload Video",
                    info="Supported formats: MP4, AVI, MOV, etc.",
                    height=300
                )
                
                text_input = gr.Textbox(
                    label="🎯 Audio Description (English)",
                    placeholder="A person walks on frozen ice",
                    lines=3,
                    info="Describe the audio you want to generate (optional)"
                )
                
                with gr.Row():
                    guidance_scale = gr.Slider(
                        minimum=1.0,
                        maximum=10.0,
                        value=4.5,
                        step=0.1,
                        label="🎚️ CFG Scale",
                    )
                    
                    inference_steps = gr.Slider(
                        minimum=10,
                        maximum=100,
                        value=50,
                        step=5,
                        label="⚑ Steps",
                    )
                    
                    sample_nums = gr.Slider(
                        minimum=1,
                        maximum=6,
                        value=1,
                        step=1,
                        label="🎲 Sample Nums",
                    )
                
                generate_btn = gr.Button(
                    "🎡 Generate Audio", 
                    variant="primary",
                    elem_classes=["generate-btn"]
                )
            
            # Results section
            with gr.Column(scale=1, elem_classes=["output-section"]):
                gr.Markdown("### πŸŽ₯ Generated Results")
                
                # Multi-video gallery for displaying multiple generated samples
                with gr.Column():
                    # Primary video (Sample 1)
                    video_output_1 = gr.Video(
                        label="Sample 1",
                        height=250,
                        visible=True
                    )
                    
                    # Additional videos (Samples 2-6) - initially hidden
                    with gr.Row(elem_classes=["additional-samples"]):
                        with gr.Column(scale=1):
                            video_output_2 = gr.Video(
                                label="Sample 2",
                                height=150,
                                visible=False
                            )
                            video_output_3 = gr.Video(
                                label="Sample 3", 
                                height=150,
                                visible=False
                            )
                        with gr.Column(scale=1):
                            video_output_4 = gr.Video(
                                label="Sample 4",
                                height=150,
                                visible=False
                            )
                            video_output_5 = gr.Video(
                                label="Sample 5",
                                height=150,
                                visible=False
                            )
                    
                    # Sample 6 - full width
                    video_output_6 = gr.Video(
                        label="Sample 6",
                        height=150,
                        visible=False
                    )
                
                result_text = gr.Textbox(
                    label="Status",
                    interactive=False,
                    lines=2
                )
        
        # Examples section at the bottom
        with gr.Column(elem_classes=["examples-section"]):
            gr.Markdown("### 🌟 Examples")
            gr.Markdown("Click on any example to load it into the interface above")
            
            # Define your custom examples here - 8 examples total
            examples_data = [
                # Example 1
                {
                    "caption": "A person walks on frozen ice",
                    "video_path": "examples/1_video.mp4",
                    "result_path": "examples/1_result.mp4"
                },
                # Example 2
                {
                    "caption": "With a faint sound as their hands parted, the two embraced, a soft 'mm' escaping between them.",
                    "video_path": "examples/2_video.mp4",
                    "result_path": "examples/2_result.mp4"
                },
                # Example 3
                {
                    "caption": "The sound of the number 3's bouncing footsteps is as light and clear as glass marbles hitting the ground. Each step carries a magical sound.", 
                    "video_path": "examples/3_video.mp4",
                    "result_path": "examples/3_result.mp4"
                },
                # Example 4
                {
                    "caption": "gentle gurgling of the stream's current, and music plays in the background which is a beautiful and serene piano solo with a hint of classical charm, evoking a sense of peace and serenity in people's hearts.",
                    "video_path": "examples/4_video.mp4",
                    "result_path": "examples/4_result.mp4"
                },
                # Example 5 - Add your new examples here
                {
                    "caption": "snow crunching under the snowboard's edge.",
                    "video_path": "examples/5_video.mp4",
                    "result_path": "examples/5_result.mp4"
                },
                # Example 6
                {
                    "caption": "The crackling of the fire, the whooshing of the flames, and the occasional crisp popping of charred leaves filled the forest.",
                    "video_path": "examples/6_video.mp4",
                    "result_path": "examples/6_result.mp4"
                },
                # Example 7
                {
                    "caption": "humming of the scooter engine accelerates slowly.",
                    "video_path": "examples/7_video.mp4",
                    "result_path": "examples/7_result.mp4"
                },
                # Example 8
                {
                    "caption": "splash of water and loud thud as person hits the surface.",
                    "video_path": "examples/8_video.mp4",
                    "result_path": "examples/8_result.mp4"
                }
            ]
            
            # Create example grid - 4 examples per row, 2 rows total
            example_buttons = []
            for row in range(2):  # 2 rows
                with gr.Row(elem_classes=["example-grid-row"]):
                    for col in range(4):  # 4 columns
                        idx = row * 4 + col
                        if idx < len(examples_data):
                            example = examples_data[idx]
                            
                            with gr.Column(scale=1, elem_classes=["example-item"]):
                                # Video thumbnail
                                if os.path.exists(example['video_path']):
                                    example_video = gr.Video(
                                        value=example['video_path'],
                                        label=f"Example {idx+1}",
                                        interactive=False,
                                        show_label=True,
                                        height=180
                                    )
                                else:
                                    example_video = gr.HTML(f"""
                                    <div style="background: #f0f0f0; padding: 15px; text-align: center; border-radius: 8px; height: 180px; display: flex; align-items: center; justify-content: center;">
                                        <div>
                                            <p style="color: #666; margin: 0; font-size: 12px;">πŸ“Ή Video not found</p>
                                            <small style="color: #999; font-size: 10px;">{example['video_path']}</small>
                                        </div>
                                    </div>
                                    """)
                                
                                # Caption (truncated for grid layout)
                                caption_preview = example['caption'][:60] + "..." if len(example['caption']) > 60 else example['caption']
                                gr.Markdown(f"{caption_preview}", elem_classes=["example-caption"])
                                
                                # Load button
                                example_btn = gr.Button(
                                    f"Load Example {idx+1}",
                                    variant="secondary",
                                    size="sm"
                                )
                                example_buttons.append((example_btn, example))
        
        # Event handlers
        def process_inference(video_file, text_prompt, guidance_scale, inference_steps, sample_nums):
            # Generate videos
            video_list, status_msg = infer_single_video(
                video_file, text_prompt, guidance_scale, inference_steps, int(sample_nums)
            )
            # Update outputs with proper visibility
            return update_video_outputs(video_list, status_msg)
        
        # Add dynamic visibility control based on sample_nums
        def update_visibility(sample_nums):
            sample_nums = int(sample_nums)
            return [
                gr.update(visible=True),  # Sample 1 always visible
                gr.update(visible=sample_nums >= 2),  # Sample 2
                gr.update(visible=sample_nums >= 3),  # Sample 3
                gr.update(visible=sample_nums >= 4),  # Sample 4
                gr.update(visible=sample_nums >= 5),  # Sample 5
                gr.update(visible=sample_nums >= 6),  # Sample 6
            ]
        
        # Update visibility when sample_nums changes
        sample_nums.change(
            fn=update_visibility,
            inputs=[sample_nums],
            outputs=[video_output_1, video_output_2, video_output_3, video_output_4, video_output_5, video_output_6]
        )
        
        generate_btn.click(
            fn=process_inference,
            inputs=[video_input, text_input, guidance_scale, inference_steps, sample_nums],
            outputs=[
                video_output_1,  # Sample 1 value
                video_output_2,  # Sample 2 value  
                video_output_3,  # Sample 3 value
                video_output_4,  # Sample 4 value
                video_output_5,  # Sample 5 value
                video_output_6,  # Sample 6 value
                result_text
            ]
        )
        
        # Add click handlers for example buttons
        for btn, example in example_buttons:
            def create_example_handler(ex):
                def handler():
                    # Check if files exist, if not, return placeholder message
                    if os.path.exists(ex['video_path']):
                        video_file = ex['video_path']
                    else:
                        video_file = None
                        
                    if os.path.exists(ex['result_path']):
                        result_video = ex['result_path']
                    else:
                        result_video = None
                    
                    status_msg = f"βœ… Loaded example with caption: {ex['caption'][:50]}..."
                    if not video_file:
                        status_msg += f"\n⚠️ Video file not found: {ex['video_path']}"
                    if not result_video:
                        status_msg += f"\n⚠️ Result video not found: {ex['result_path']}"
                        
                    return video_file, ex['caption'], result_video, status_msg
                return handler
            
            btn.click(
                fn=create_example_handler(example),
                outputs=[video_input, text_input, video_output_1, result_text]
            )
        
        # Footer
        gr.HTML("""
        <div class="footer-text">
            <p>πŸš€ Powered by HunyuanVideo-Foley | Generate high-quality audio from video and text descriptions</p>
        </div>
        """)
    
    return app

def set_manual_seed(global_seed):
    random.seed(global_seed)
    np.random.seed(global_seed)
    torch.manual_seed(global_seed)

if __name__ == "__main__":
    set_manual_seed(1)
    # Setup logging
    logger.remove()
    logger.add(lambda msg: print(msg, end=''), level="INFO")
    
    # Auto-load model
    logger.info("Starting application and loading model...")
    model_load_result = auto_load_models()
    logger.info(model_load_result)
    
    # Create and launch Gradio app
    app = create_gradio_interface()
    
    # Log completion status
    if "successfully" in model_load_result:
        logger.info("Application ready, model loaded")
    
    app.launch(
        server_name="0.0.0.0",
        server_port=8080,
        share=False,
        debug=False,
        show_error=True
    )