Spaces:
Running
on
Zero
Running
on
Zero
File size: 44,884 Bytes
9867d34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 |
import logging
import math
import random
from typing import Tuple
import torch
import torchvision
import torchaudio
import numpy as np
import einops
def sec2frames(sec, fps):
return int(sec * fps)
def frames2sec(frames, fps):
return frames / fps
class EqualifyFromRight(torch.nn.Module):
def __init__(self, clip_max_len_sec=10):
"""
Takes the dataset item and makes sure more streams are of an equal size in terms of fps.
It, however, assumes that the signal is synched and trims the ending parts ('from the right').
"""
super().__init__()
self.clip_max_len_sec = clip_max_len_sec
def forward(self, item):
"""
`item`: {'video': (Tv, C, H, W), 'audio': (Ta,),
'meta': {
'audio': {'framerate': [float], 'duration': [float]}
'video': {'fps': [float], 'duration': [float]}}
"""
a_fps = item["meta"]["audio"]["framerate"][0]
v_fps = item["meta"]["video"]["fps"][0]
Ta = item["audio"].shape[0]
Tv, C, H, W = item["video"].shape
a_len_secs = Ta / a_fps
v_len_secs = Tv / v_fps
min_len = min(self.clip_max_len_sec, a_len_secs, v_len_secs)
a_frames_per_v_frame = a_fps // v_fps
v_len_frames = int(v_fps * min_len)
a_len_frames = int(a_frames_per_v_frame * v_len_frames)
# print(a_len_frames, v_len_frames)
assert a_len_frames <= Ta and v_len_frames <= Tv
item["audio"] = item["audio"][:a_len_frames]
item["video"] = item["video"][:v_len_frames, :, :, :]
return item
class RGBSpatialCrop(torch.nn.Module):
def __init__(self, input_size, is_random):
super().__init__()
assert input_size is not None, f"smaller_input_size is `{input_size}`"
if isinstance(input_size, int):
input_size = (input_size, input_size)
self.input_size = input_size
self.is_random = is_random
@staticmethod
def get_random_crop_sides(vid, output_size):
"""Slice parameters for random crop"""
h, w = vid.shape[-2:]
th, tw = output_size
if w == tw and h == th:
return 0, 0, h, w
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
return i, j, th, tw
@staticmethod
def get_center_crop_sides(vid, output_size):
"""Slice parameters for center crop"""
h, w = vid.shape[-2:]
th, tw = output_size
i = int(round((h - th) / 2.0))
j = int(round((w - tw) / 2.0))
return i, j, th, tw
def forward(self, item):
# (Tv, C, H, W)
vid = item["video"]
if self.is_random:
i, j, h, w = self.get_random_crop_sides(vid, self.input_size)
else:
i, j, h, w = self.get_center_crop_sides(vid, self.input_size)
item["video"] = vid[..., i : (i + h), j : (j + w)]
return item
class Resize(torchvision.transforms.Resize):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, item):
item["video"] = super().forward(item["video"])
return item
class RGBSpatialCropSometimesUpscale(torch.nn.Module):
"""This (randomly) crops the input video and with prob `sometimes_p` this crop is smaller but upscaled
to `target_input_size`"""
def __init__(self, sometimes_p, target_input_size, is_random, smaller_input_size=None):
super().__init__()
self.sometimes_p = sometimes_p
self.do_sometimes_upscale = sometimes_p is not None and sometimes_p > 0
self.crop_only = RGBSpatialCrop(target_input_size, is_random)
if self.do_sometimes_upscale:
self.crop_further_and_upscale = torchvision.transforms.Compose(
[
RGBSpatialCrop(smaller_input_size, is_random),
Resize(target_input_size, antialias=None),
]
)
def forward(self, item):
assert len(item["video"].shape) == 4, (
f"{item['video'].shape}: if it is applied after GenerateMultipleClips,"
"augs should be applied to each clip separately, not to the whole video array. "
"Otherwise, ignore this warning (comment it)."
)
if self.do_sometimes_upscale and self.sometimes_p > torch.rand(1):
return self.crop_further_and_upscale(item)
else:
return self.crop_only(item)
class RandomApplyColorDistortion(torch.nn.Module):
def __init__(self, p_gray_scale=0.0, p_color_jitter=0.0, s=1.0) -> None:
super().__init__()
self.p_gray_scale = p_gray_scale
self.p_color_jitter = p_color_jitter
self.s = s
assert 0 <= self.p_color_jitter <= 1 and 0 <= self.p_gray_scale <= 1, (p_color_jitter, p_gray_scale)
# SimCLR params
color_jitter = torchvision.transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s)
rand_color_jitter = torchvision.transforms.RandomApply([color_jitter], p_color_jitter)
rand_gray = torchvision.transforms.RandomGrayscale(p_gray_scale)
self.transforms = torchvision.transforms.Compose([rand_color_jitter, rand_gray])
def apply_to_single_clip(self, clip):
return self.transforms(clip)
def apply_to_each_clip(self, clips):
for i, clip in enumerate(clips):
clips[i] = self.apply_to_single_clip(clip)
return clips
def forward(self, item):
has_batch_dim = len(item["video"].shape) == 5
if has_batch_dim:
fn = self.apply_to_each_clip
else:
fn = self.apply_to_single_clip
item["video"] = fn(item["video"])
return item
class ApplyColorJitterFrameWise(torch.nn.Module):
def __init__(self, s=1.0) -> None:
super().__init__()
self.s = s
# SimCLR params
self.transform = torchvision.transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s)
def apply_to_single_clip(self, clip):
for i, frame in enumerate(clip):
clip[i] = self.transform(frame)
return clip
def apply_to_each_clip(self, clips):
for i, clip in enumerate(clips):
clips[i] = self.apply_to_single_clip(clip)
return clips
def forward(self, item):
has_batch_dim = len(item["video"].shape) == 5
if has_batch_dim:
fn = self.apply_to_each_clip
else:
fn = self.apply_to_single_clip
item["video"] = fn(item["video"])
return item
class RandomHorizontalFlip(torchvision.transforms.RandomHorizontalFlip):
def __init__(self, p=0.5):
super().__init__(p)
def apply_to_single_clip(self, clip):
return super().forward(clip)
def apply_to_each_clip(self, clips):
for i, clip in enumerate(clips):
clips[i] = self.apply_to_single_clip(clip)
return clips
def forward(self, item):
has_batch_dim = len(item["video"].shape) == 5
if has_batch_dim:
fn = self.apply_to_each_clip
else:
fn = self.apply_to_single_clip
item["video"] = fn(item["video"])
return item
def make_class_grid(
leftmost_val,
rightmost_val,
grid_size,
add_extreme_offset: bool = False,
seg_size_vframes: int = None,
nseg: int = None,
step_size_seg: float = None,
vfps: float = None,
):
assert grid_size >= 3, f"grid_size: {grid_size} doesnot make sense. If =2 -> (-1,1); =1 -> (-1); =0 -> ()"
grid = torch.from_numpy(np.linspace(leftmost_val, rightmost_val, grid_size)).float()
if add_extreme_offset:
assert all([seg_size_vframes, nseg, step_size_seg]), f"{seg_size_vframes} {nseg} {step_size_seg}"
seg_size_sec = seg_size_vframes / vfps
trim_size_in_seg = nseg - (1 - step_size_seg) * (nseg - 1)
extreme_value = trim_size_in_seg * seg_size_sec
grid = torch.cat([grid, torch.tensor([extreme_value])]) # adding extreme offset to the class grid
return grid
def quantize_offset(grid: torch.Tensor, off_sec: float) -> Tuple[float, int]:
"""Takes in the offset in seconds and snaps it onto the closest grid element.
Returns the grid value and its index."""
closest_grid_el = (grid - off_sec).abs().argmin()
return grid[closest_grid_el], closest_grid_el
def apply_a_jitter(a_start_i, a_len_frames, a_crop_len_frames, a_fps, max_a_jitter_sec):
max_a_start_i = a_len_frames - a_crop_len_frames
max_a_jitter_i = sec2frames(max_a_jitter_sec, a_fps)
max_a_jitter_i_left = min(a_start_i, max_a_jitter_i)
max_a_jitter_i_right = min(max_a_start_i - a_start_i, max_a_jitter_i)
# jitter is U[left, right]
a_jitter_i = random.randint(-max_a_jitter_i_left, max_a_jitter_i_right)
# apply jitter
a_start_i = a_start_i + a_jitter_i
# making sure that any value from `a_start_i + U[left, right]` will be inside of [0, len-crop] region
assert 0 <= a_start_i <= max_a_start_i, f"{a_jitter_i} {max_a_jitter_i_left} {max_a_jitter_i_right} {max_a_start_i}"
return a_start_i, a_jitter_i
class TemporalCropAndOffset(torch.nn.Module):
def __init__(
self,
crop_len_sec: float,
max_off_sec: float,
offset_type="grid",
do_offset: bool = True,
grid_size: int = None,
max_wiggle_sec: float = None,
add_doubt_cls: bool = False,
segment_size_vframes: int = None,
n_segments: int = None,
step_size_seg: float = None,
vfps: float = None,
prob_oos: float = None,
):
super().__init__()
self.crop_len_sec = crop_len_sec
self.do_offset = do_offset
self.grid_size = grid_size
self.offset_type = offset_type
self.max_off_sec = max_off_sec
self.max_a_jitter_sec = max_wiggle_sec
if do_offset:
if offset_type == "grid":
self.class_grid = make_class_grid(
-max_off_sec,
max_off_sec,
grid_size,
add_doubt_cls,
segment_size_vframes,
n_segments,
step_size_seg,
vfps,
)
logging.info(f"Offsets class grid: {self.class_grid}")
if self.max_a_jitter_sec is not None:
assert (max_wiggle_sec - 1e-6) <= (
(self.class_grid[1] - self.class_grid[0]) / 2
), f"{self.class_grid}"
elif offset_type == "uniform":
self.off_dist = torch.distributions.uniform.Uniform(-max_off_sec, max_off_sec)
logging.info(f"Offset uniform distribution: {self.off_dist}")
elif offset_type == "uniform_binary":
self.itu_t_range = (-0.125, 0.045)
self.prob_oos = prob_oos
self.ins_dist = torch.distributions.uniform.Uniform(self.itu_t_range[0], self.itu_t_range[1])
self.off_dist = torch.distributions.uniform.Uniform(-max_off_sec, max_off_sec)
else:
raise NotImplementedError(f"Unknown offset type: {offset_type}")
def forward(self, item):
vid = item["video"]
aud = item["audio"]
v_len_frames, C, H, W = vid.shape
a_len_frames = aud.shape[0]
v_fps = int(item["meta"]["video"]["fps"][0])
a_fps = int(item["meta"]["audio"]["framerate"][0])
v_crop_len_frames = sec2frames(self.crop_len_sec, v_fps)
a_crop_len_frames = sec2frames(self.crop_len_sec, a_fps)
if self.do_offset:
# trying to get the offset parameters (for instance during valid and test we have fixed offsets)
offset_sec = item["targets"].get("offset_sec", None)
v_start_i_sec = item["targets"].get("v_start_i_sec", None)
if "offset_target" in item["targets"]:
is_oos = item["targets"]["offset_target"].get("oos", None)
# train-time
if offset_sec is None and v_start_i_sec is None:
# aud starts `offset_sec` earlier than it should; aud has what will be shown after offset_sec
if self.offset_type == "grid":
offset_sec = random.choice(self.class_grid.tolist())
elif self.offset_type == "uniform":
offset_sec = self.off_dist.sample().item()
elif self.offset_type == "uniform_binary":
# in-sync: Uniform(-0.125, 0.045)
# out-of-sync: Uniform(-5.5, 5.5) and resampled until not in Uniform(-0.125, 0.045)
# first, we sample if the offset is out-of-sync with prob_oss
is_oos = (torch.rand(1) < self.prob_oos).item()
if is_oos:
# second, we sample the offset itself (if in in-sync range, trying again)
offset_sec = self.off_dist.sample().item()
while self.itu_t_range[0] <= offset_sec <= self.itu_t_range[1]:
offset_sec = self.off_dist.sample().item()
else:
offset_sec = self.ins_dist.sample().item()
offset_sec = round(offset_sec, 2)
v_start_max_sec = frames2sec(v_len_frames - v_crop_len_frames, v_fps)
assert v_start_max_sec > 0, f'{v_len_frames} {v_crop_len_frames} {v_fps} @ {item["path"]}'
# `v_start_sec` IS NOT rounded to the fps grid
v_start_sec = random.uniform(max(0, -offset_sec), min(v_start_max_sec, v_start_max_sec - offset_sec))
assert 0 <= v_start_sec <= v_start_max_sec, f'{v_start_sec} {v_start_max_sec} {item["path"]}'
v_start_i = sec2frames(v_start_sec, v_fps)
# `v_start_i_sec` IS rounded to the fps grid
v_start_i_sec = frames2sec(v_start_i, v_fps)
else:
offset_sec = round(offset_sec, 2)
v_start_i = sec2frames(v_start_i_sec, v_fps)
v_end_i = v_start_i + v_crop_len_frames
# `a_start_i` depends on the rounded value `v_start_i_sec`, otherwise
# (v_start_sec) we have ±0.1 jittering
a_start_i = sec2frames(v_start_i_sec + offset_sec, a_fps)
else:
offset_sec = 0.0
is_random_crop = item["split"] == "train"
v_start_i, v_end_i = self.get_crop_idx(v_len_frames, v_crop_len_frames, is_random=is_random_crop)
v_start_i_sec = frames2sec(v_start_i, v_fps)
a_start_i = sec2frames(v_start_i_sec, a_fps)
# sometimes due to the rounding error e.g. v_start_sec = 1.505 but sec2frames(1.505, 25) = 1.48
# given offset is -1.5, the a_start_i will be a small negative value. (likely a_fps * 1/v_fps * 0.5)
if a_start_i < 0:
how_much_out = a_start_i
logging.info(f'a_start_i is negative ({how_much_out}) at {item["path"]}')
if abs(how_much_out) <= a_fps / v_fps:
logging.info("fixing it")
a_start_i += abs(how_much_out)
else:
raise Exception(f'{how_much_out} {item["path"]}')
if self.max_a_jitter_sec is not None and self.max_a_jitter_sec > 0:
a_start_i, a_jitter_i = apply_a_jitter(
a_start_i, a_len_frames, a_crop_len_frames, a_fps, self.max_a_jitter_sec
)
item["meta"]["a_jitter_i"] = a_jitter_i
a_end_i = a_start_i + a_crop_len_frames
assert v_start_i < v_end_i and a_start_i < a_end_i
assert aud.shape[0] >= a_end_i, f'{aud.shape} {a_end_i} {item["path"]}'
assert vid.shape[0] >= v_end_i, f'{vid.shape} {v_end_i} {item["path"]}'
vid, aud = vid[v_start_i:v_end_i, :, :, :], aud[a_start_i:a_end_i]
item["video"] = vid
item["audio"] = aud
assert item["video"].shape[0] == v_fps * self.crop_len_sec, f'{item["video"].shape} {item["path"]}'
assert item["audio"].shape[0] == a_fps * self.crop_len_sec, f'{item["audio"].shape} {item["path"]}'
# caching parameters
if self.do_offset:
if self.offset_type == "grid":
offset_label, offset_target = quantize_offset(self.class_grid, offset_sec)
elif self.offset_type == "uniform":
offset_label, offset_target = offset_sec, offset_sec
elif self.offset_type == "uniform_binary":
offset_label, offset_target = offset_sec, {"oos": is_oos, "offset": offset_sec}
item["targets"]["offset_sec"] = offset_sec
item["targets"]["v_start_i_sec"] = v_start_i_sec
item["targets"]["offset_label"] = offset_label
# assert 'offset_target' not in item['targets'], f'{item["targets"]}. What passed it there?'
item["targets"]["offset_target"] = offset_target
return item
def get_crop_idx(self, len_frames: int, crop_len_frames: int, is_random=True):
if len_frames == crop_len_frames:
return 0, len_frames
if is_random:
left_i = random.randint(0, len_frames - crop_len_frames)
else:
left_i = int(round((len_frames - crop_len_frames) / 2.0))
return left_i, left_i + crop_len_frames
class GenerateMultipleSegments(torch.nn.Module):
"""
Given an item with video and audio, generates a batch of `n_segments` segments
of length `segment_size_vframes` (if None, the max number of segments will be made).
If `is_start_random` is True, the starting position of the 1st segment will be random but respecting
n_segments.
`audio_jitter_sec` is the amount of audio offset in seconds.
"""
def __init__(
self,
segment_size_vframes: int,
n_segments: int = None,
is_start_random: bool = False,
audio_jitter_sec: float = 0.0,
step_size_seg: float = 1,
):
super().__init__()
self.segment_size_vframes = segment_size_vframes
self.n_segments = n_segments
self.is_start_random = is_start_random
self.audio_jitter_sec = audio_jitter_sec
self.step_size_seg = step_size_seg
logging.info(f"Segment step size: {self.step_size_seg}")
def forward(self, item):
v_len_frames, C, H, W = item["video"].shape
a_len_frames = item["audio"].shape[0]
v_fps = int(item["meta"]["video"]["fps"][0])
a_fps = int(item["meta"]["audio"]["framerate"][0])
## Determining the number of segments
# segment size
segment_size_vframes = self.segment_size_vframes
segment_size_aframes = sec2frames(frames2sec(self.segment_size_vframes, v_fps), a_fps)
# step size (stride)
stride_vframes = int(self.step_size_seg * segment_size_vframes)
stride_aframes = int(self.step_size_seg * segment_size_aframes)
# calculating the number of segments. (W - F + 2P) / S + 1
n_segments_max_v = math.floor((v_len_frames - segment_size_vframes) / stride_vframes) + 1
n_segments_max_a = math.floor((a_len_frames - segment_size_aframes) / stride_aframes) + 1
# making sure audio and video can accommodate the same number of segments
n_segments_max = min(n_segments_max_v, n_segments_max_a)
n_segments = n_segments_max if self.n_segments is None else self.n_segments
assert n_segments <= n_segments_max, (
f"cant make {n_segments} segs of len {self.segment_size_vframes} in a vid "
f'of len {v_len_frames} for {item["path"]}'
)
# (n_segments, 2) each
v_ranges, a_ranges = self.get_sequential_seg_ranges(
v_len_frames, a_len_frames, v_fps, a_fps, n_segments, segment_size_aframes
)
# segmenting original streams (n_segments, segment_size_frames, C, H, W)
item["video"] = torch.stack([item["video"][s:e] for s, e in v_ranges], dim=0)
item["audio"] = torch.stack([item["audio"][s:e] for s, e in a_ranges], dim=0)
return item
def get_sequential_seg_ranges(self, v_len_frames, a_len_frames, v_fps, a_fps, n_seg, seg_size_aframes):
# if is_start_random is True, the starting position of the 1st segment will
# be random but respecting n_segments like so: "-CCCCCCCC---" (maybe with fixed overlap),
# else the segments are taken from the middle of the video respecting n_segments: "--CCCCCCCC--"
seg_size_vframes = self.segment_size_vframes # for brevity
# calculating the step size in frames
step_size_vframes = int(self.step_size_seg * seg_size_vframes)
step_size_aframes = int(self.step_size_seg * seg_size_aframes)
# calculating the length of the sequence of segments (and in frames)
seg_seq_len = n_seg * self.step_size_seg + (1 - self.step_size_seg)
vframes_seg_seq_len = int(seg_seq_len * seg_size_vframes)
aframes_seg_seq_len = int(seg_seq_len * seg_size_aframes)
# doing temporal crop
max_v_start_i = v_len_frames - vframes_seg_seq_len
if self.is_start_random:
v_start_i = random.randint(0, max_v_start_i)
else:
v_start_i = max_v_start_i // 2
a_start_i = sec2frames(frames2sec(v_start_i, v_fps), a_fps) # vid frames -> seconds -> aud frames
# make segments starts
v_start_seg_i = torch.tensor([v_start_i + i * step_size_vframes for i in range(n_seg)]).int()
a_start_seg_i = torch.tensor([a_start_i + i * step_size_aframes for i in range(n_seg)]).int()
# apply jitter to audio
if self.audio_jitter_sec > 0:
jitter_aframes = sec2frames(self.audio_jitter_sec, a_fps)
# making sure after applying jitter, the audio is still within the audio boundaries
jitter_aframes = min(jitter_aframes, a_start_i, a_len_frames - a_start_i - aframes_seg_seq_len)
a_start_seg_i += random.randint(-jitter_aframes, jitter_aframes) # applying jitter to segments
# make segment ends
v_ends_seg_i = v_start_seg_i + seg_size_vframes
a_ends_seg_i = a_start_seg_i + seg_size_aframes # using the adjusted a_start_seg_i (with jitter)
# make ranges
v_ranges = torch.stack([v_start_seg_i, v_ends_seg_i], dim=1)
a_ranges = torch.stack([a_start_seg_i, a_ends_seg_i], dim=1)
assert (a_ranges >= 0).all() and (a_ranges <= a_len_frames).all(), f"{a_ranges} out of {a_len_frames}"
assert (v_ranges <= v_len_frames).all(), f"{v_ranges} out of {v_len_frames}"
return v_ranges, a_ranges
class TemporalCropAndOffsetForSyncabilityTraining(torch.nn.Module):
def __init__(
self,
max_off_sec: float,
do_offset: bool = True,
grid_size: int = None,
max_wiggle_sec: float = None,
segment_size_vframes: int = None,
n_segments: int = None,
step_size_seg: float = None,
vfps: float = None,
):
super().__init__()
seg_size_sec = segment_size_vframes / vfps
trim_size_in_seg = n_segments - (1 - step_size_seg) * (n_segments - 1)
self.crop_len_sec = round(trim_size_in_seg * seg_size_sec, 2)
logging.info(f"Crop len: {self.crop_len_sec}")
self.do_offset = do_offset
self.grid_size = grid_size
self.max_off_sec = max_off_sec
self.max_a_jitter_sec = max_wiggle_sec
self.segment_size_vframes = segment_size_vframes
self.n_segments = n_segments
self.step_size_seg = step_size_seg
self.prob_syncable = 0.5
if do_offset:
self.class_grid = make_class_grid(-max_off_sec, max_off_sec, grid_size)
logging.info(f"Offset class grid: {self.class_grid}")
if self.max_a_jitter_sec is not None:
assert (max_wiggle_sec - 1e-6) <= ((self.class_grid[1] - self.class_grid[0]) / 2), f"{self.class_grid}"
def forward(self, item):
vid = item["video"]
aud = item["audio"]
v_len_frames, C, H, W = vid.shape
a_len_frames = aud.shape[0]
v_fps = int(item["meta"]["video"]["fps"][0])
a_fps = int(item["meta"]["audio"]["framerate"][0])
v_crop_len_frames = sec2frames(self.crop_len_sec, v_fps)
a_crop_len_frames = sec2frames(self.crop_len_sec, a_fps)
if self.do_offset:
# trying to get the offset parameters (for instance during valid and test we have fixed offsets)
offset_sec = item["targets"].get("offset_sec", None)
v_start_i_sec = item["targets"].get("v_start_i_sec", None)
# train-time
if offset_sec is None and v_start_i_sec is None:
# for the syncability training, we want to have a syncable or non-syncable offset with 50% prob
offset_is_syncable = random.random() < self.prob_syncable # 1=syncable, 0=non-syncable
if offset_is_syncable:
offset_sec = random.choice(self.class_grid.tolist())
else:
offset_sec = random.choice([-self.crop_len_sec, self.crop_len_sec]) # either - or + offset
# aud starts `offset_sec` earlier than it should; aud has what will be shown after offset_sec
offset_sec = round(offset_sec, 2)
v_start_max_sec = frames2sec(v_len_frames - v_crop_len_frames, v_fps)
assert v_start_max_sec > 0, f'{v_len_frames} {v_crop_len_frames} {v_fps} @ {item["path"]}'
# `v_start_sec` IS NOT rounded to the fps grid
v_start_sec = random.uniform(max(0, -offset_sec), min(v_start_max_sec, v_start_max_sec - offset_sec))
assert 0 <= v_start_sec <= v_start_max_sec, f'{v_start_sec} {v_start_max_sec} {item["path"]}'
v_start_i = sec2frames(v_start_sec, v_fps)
v_end_i = v_start_i + v_crop_len_frames
# `v_start_i_sec` IS rounded to the fps grid
v_start_i_sec = frames2sec(v_start_i, v_fps)
# `a_start_i` depends on the rounded value `v_start_i_sec`, otherwise
# (v_start_sec) we have ±0.1 jittering
a_start_i = sec2frames(v_start_i_sec + offset_sec, a_fps)
if self.max_a_jitter_sec is not None and self.max_a_jitter_sec > 0:
a_start_i, a_jitter_i = apply_a_jitter(
a_start_i, a_len_frames, a_crop_len_frames, a_fps, self.max_a_jitter_sec
)
item["meta"]["a_jitter_i"] = a_jitter_i
a_end_i = a_start_i + a_crop_len_frames
else:
offset_sec = round(offset_sec, 2)
v_start_i = sec2frames(v_start_i_sec, v_fps)
a_start_i = sec2frames(v_start_i_sec + offset_sec, a_fps)
v_end_i = v_start_i + v_crop_len_frames
a_end_i = a_start_i + a_crop_len_frames
else:
offset_sec = 0.0
is_random_crop = item["split"] == "train"
v_start_i, v_end_i = self.get_crop_idx(v_len_frames, v_crop_len_frames, is_random=is_random_crop)
v_start_i_sec = frames2sec(v_start_i, v_fps)
a_start_i = sec2frames(v_start_i_sec, a_fps)
if self.max_a_jitter_sec is not None and self.max_a_jitter_sec > 0:
a_start_i, a_jitter_i = apply_a_jitter(
a_start_i, a_len_frames, a_crop_len_frames, a_fps, self.max_a_jitter_sec
)
item["meta"]["a_jitter_i"] = a_jitter_i
a_end_i = a_start_i + a_crop_len_frames
# sometimes due to the rounding error e.g. v_start_sec = 1.505 but sec2frames(1.505, 25) = 1.48
# given offset is -1.5, the a_start_i will be a small negative value. (likely a_fps * 1/v_fps * 0.5)
if a_start_i < 0:
how_much_out = a_start_i
logging.info(f'a_start_i is negative ({how_much_out}) at {item["path"]}')
if abs(how_much_out) <= a_fps / v_fps:
logging.info("fixing it")
a_start_i += abs(how_much_out)
a_end_i += abs(how_much_out)
else:
raise Exception(f'{how_much_out} {item["path"]}')
assert v_start_i < v_end_i and a_start_i < a_end_i
assert aud.shape[0] >= a_end_i, f'{aud.shape} {a_end_i} {item["path"]}'
assert vid.shape[0] >= v_end_i, f'{vid.shape} {v_end_i} {item["path"]}'
vid, aud = vid[v_start_i:v_end_i, :, :, :], aud[a_start_i:a_end_i]
item["video"] = vid
item["audio"] = aud
assert item["video"].shape[0] == int(v_fps * self.crop_len_sec), f'{item["video"].shape} {item["path"]}'
assert item["audio"].shape[0] == int(a_fps * self.crop_len_sec), f'{item["audio"].shape} {item["path"]}'
# caching parameters
if self.do_offset:
# NOTE: this is useless for the extreme offsetting
offset_label, offset_target = quantize_offset(self.class_grid, offset_sec)
item["targets"]["offset_sec"] = offset_sec
item["targets"]["offset_label"] = offset_label
# assert 'offset_target' not in item['targets'], f'{item["targets"]}. What passed it there?'
item["targets"]["offset_target"] = offset_target
item["targets"]["v_start_i_sec"] = v_start_i_sec
item["targets"]["sync_target"] = int(offset_is_syncable)
return item
def get_crop_idx(self, len_frames: int, crop_len_frames: int, is_random=True):
if len_frames == crop_len_frames:
return 0, len_frames
if is_random:
left_i = random.randint(0, len_frames - crop_len_frames)
else:
left_i = int(round((len_frames - crop_len_frames) / 2.0))
return left_i, left_i + crop_len_frames
class RGBToFloatToZeroOne(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, item):
item["video"] = item["video"].to(torch.float32).div(255.0)
return item
class RGBToHalfToZeroOne(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, item):
item["video"] = item["video"].half().div(255.0)
return item
class RGBNormalize(torchvision.transforms.Normalize):
"""The same as the torchvision`s but with different interface for the dict.
This should work for any shape (..., C, H, W)"""
def __init__(self, mean, std, inplace=False):
super().__init__(mean, std, inplace)
logging.info(f"RGBNormalize: mean={mean}, std={std}")
def forward(self, item):
item["video"] = super().forward(item["video"])
item["meta"]["video"]["norm_stats"] = {"mean": torch.as_tensor(self.mean), "std": torch.as_tensor(self.std)}
return item
class AudioRandomVolume(torch.nn.Module):
def __init__(self, p: float, **kwargs):
super().__init__()
transform = torchaudio.transforms.Vol(**kwargs)
self.transform = torchvision.transforms.RandomApply([transform], p)
def apply_to_single_clip(self, clip):
return self.transform(clip)
def apply_to_each_clip(self, clips):
for i, clip in enumerate(clips):
clips[i] = self.apply_to_single_clip(clip)
return clips
def forward(self, item):
has_batch_dim = len(item["audio"].shape) == 2
if has_batch_dim:
fn = self.apply_to_each_clip
else:
fn = self.apply_to_single_clip
item["audio"] = fn(item["audio"])
return item
class AudioRandomLowpassFilter(torch.nn.Module):
def __init__(self, p: float, cutoff_freq: float, Q: float = 0.707):
super().__init__()
self.p = p
self.cutoff_freq = cutoff_freq
self.Q = Q
def apply_to_single_clip(self, clip, sr):
if self.p > torch.rand(1):
return torchaudio.functional.lowpass_biquad(clip, sr, self.cutoff_freq, self.Q)
else:
return clip
def apply_to_each_clip(self, clips, sr):
for i, clip in enumerate(clips):
clips[i] = self.apply_to_single_clip(clip, sr)
return clips
def forward(self, item):
has_batch_dim = len(item["audio"].shape) == 2
sr = int(item["meta"]["audio"]["framerate"][0])
if has_batch_dim:
fn = self.apply_to_each_clip
else:
fn = self.apply_to_single_clip
item["audio"] = fn(item["audio"], sr)
return item
class AudioRandomPitchShift(torch.nn.Module):
def __init__(self, p: float, shift: int) -> None:
super().__init__()
self.p = p
self.shift = shift
def apply_to_single_clip(self, wave, sr):
if self.p > torch.rand(1):
effects = [["pitch", f"{self.shift}"], ["rate", f"{sr}"]]
wave = wave.unsqueeze(0)
wave, _ = torchaudio.sox_effects.apply_effects_tensor(wave, sr, effects)
wave = wave.squeeze(0)
return wave
def apply_to_each_clip(self, waves, sr):
for i, wave in enumerate(waves):
waves[i] = self.apply_to_single_clip(wave, sr)
return waves
def forward(self, item):
has_batch_dim = len(item["audio"].shape) == 2
sr = int(item["meta"]["audio"]["framerate"][0])
if has_batch_dim:
fn = self.apply_to_each_clip
else:
fn = self.apply_to_single_clip
item["audio"] = fn(item["audio"], sr)
return item
class AudioRandomReverb(torch.nn.Module):
def __init__(self, p: float) -> None:
super().__init__()
self.p = p
self.effects = [["reverb", "-w"]]
def apply_to_single_clip(self, wave, fps):
if self.p > torch.rand(1):
wave = wave.unsqueeze(0)
wave, _ = torchaudio.sox_effects.apply_effects_tensor(wave, fps, self.effects)
wave = wave.mean(dim=0)
return wave
def apply_to_each_clip(self, waves, fps):
for i, wave in enumerate(waves):
waves[i] = self.apply_to_single_clip(wave, fps)
return waves
def forward(self, item):
has_batch_dim = len(item["audio"].shape) == 2
sr = int(item["meta"]["audio"]["framerate"][0])
if has_batch_dim:
fn = self.apply_to_each_clip
else:
fn = self.apply_to_single_clip
item["audio"] = fn(item["audio"], sr)
return item
class AudioRandomGaussNoise(torch.nn.Module):
def __init__(self, p: float, amplitude=0.01) -> None:
super().__init__()
self.p = p
self.amplitude = amplitude
def apply_to_single_clip(self, wave):
if self.p > torch.rand(1):
noise = torch.randn_like(wave, dtype=wave.dtype)
wave = wave + self.amplitude * noise
return wave
def apply_to_each_clip(self, waves):
for i, wave in enumerate(waves):
waves[i] = self.apply_to_single_clip(wave)
return waves
def forward(self, item):
has_batch_dim = len(item["audio"].shape) == 2
if has_batch_dim:
fn = self.apply_to_each_clip
else:
fn = self.apply_to_single_clip
item["audio"] = fn(item["audio"])
return item
class AudioMelSpectrogram(torch.nn.Module):
def __init__(self, **kwargs):
super().__init__()
self.spec = torchaudio.transforms.MelSpectrogram(**kwargs)
def forward(self, item):
item["audio"] = self.spec(item["audio"]) # safe for batched input
return item
class AudioLog(torch.nn.Module):
def __init__(self, eps=1e-6) -> None:
super().__init__()
self.eps = eps
def forward(self, item):
item["audio"] = torch.log(item["audio"] + self.eps)
return item
class PadOrTruncate(torch.nn.Module):
def __init__(self, max_spec_t: int, pad_mode: str = "constant", pad_value: float = 0.0):
super().__init__()
self.max_spec_t = max_spec_t
self.pad_mode = pad_mode
self.pad_value = pad_value
def forward(self, item):
item["audio"] = self.pad_or_truncate(item["audio"])
return item
def pad_or_truncate(self, audio):
difference = self.max_spec_t - audio.shape[-1] # safe for batched input
# pad or truncate, depending on difference
if difference > 0:
# pad the last dim (time) -> (..., n_mels, 0+time+difference) # safe for batched input
pad_dims = (0, difference)
audio = torch.nn.functional.pad(audio, pad_dims, self.pad_mode, self.pad_value)
elif difference < 0:
logging.warning(f"Truncating spec ({audio.shape}) to max_spec_t ({self.max_spec_t}).")
audio = audio[..., : self.max_spec_t] # safe for batched input
return audio
class AudioNormalizeAST(torch.nn.Module):
"""Normalization is done with two specified mean and std (half)"""
def __init__(self, mean: float, std: float) -> None:
super().__init__()
self.mean = mean
self.std = std
def forward(self, item):
item["audio"] = (item["audio"] - self.mean) / (2 * self.std)
item["meta"]["audio"]["norm_stats"] = {"mean": self.mean, "std": self.std}
return item
class PermuteStreams(torch.nn.Module):
def __init__(self, einops_order_audio: str, einops_order_rgb: str) -> None:
'''For example:
einops_order_audio: "S F T -> S T F"
einops_order_rgb: "S T C H W -> S C T H W"'''
super().__init__()
self.einops_order_audio = einops_order_audio
self.einops_order_rgb = einops_order_rgb
def forward(self, item):
if self.einops_order_audio is not None:
item["audio"] = einops.rearrange(item["audio"], self.einops_order_audio).contiguous()
if self.einops_order_rgb is not None:
item["video"] = einops.rearrange(item["video"], self.einops_order_rgb).contiguous()
return item
class ResampleAudio(torch.nn.Module):
def __init__(self, new_fps: int):
super().__init__()
self.new_fps = new_fps
def forward(self, item):
orig_fps = int(item["meta"]["audio"]["framerate"][0])
item["meta"]["audio"]["orig_shape"] = item["audio"].shape
if orig_fps != self.new_fps:
item["audio"] = torchaudio.functional.resample(item["audio"], orig_fps, self.new_fps)
item["meta"]["audio"]["framerate"][0] = self.new_fps
return item
class ResampleRGB(torch.nn.Module):
def __init__(self, new_fps: int) -> None:
super().__init__()
self.new_fps = new_fps
def forward(self, item):
orig_fps = float(item["meta"]["video"]["fps"][0])
item["meta"]["video"]["orig_shape"] = item["video"].shape
if orig_fps != self.new_fps:
duration_sec = item["video"].shape[0] / orig_fps
indices = torch.arange(0, orig_fps * duration_sec - 1e-9, orig_fps / self.new_fps)
# basically, rounding
indices = indices.to(dtype=torch.long)
item["video"] = item["video"][indices]
item["meta"]["video"]["fps"][0] = self.new_fps
return item
class ResizeAndLetterboxPad(torch.nn.Module):
"""Adapted from WACV24 Amazon`s challenge"""
def __init__(self, new_h, new_w):
super().__init__()
self.new_h = new_h
self.new_w = new_w
self.aspect_ratio = new_w / new_h
def forward(self, item):
item["video"] = self.resize_and_pad(item["video"])
return item
def resize_and_pad(self, rgb: torch.Tensor):
_, _, height, width = rgb.shape
current_aspect_ratio = width / height
if current_aspect_ratio > self.aspect_ratio:
scaled_height = round(self.new_w / current_aspect_ratio)
rgb = torchvision.transforms.functional.resize(rgb, (scaled_height, self.new_w), antialias=None)
top = (self.new_h - scaled_height) // 2
bottom = self.new_h - (scaled_height + top)
rgb = torch.nn.ConstantPad2d((0, 0, top, bottom), 0)(rgb)
elif current_aspect_ratio < self.aspect_ratio:
scaled_width = round(self.new_h * current_aspect_ratio)
rgb = torchvision.transforms.functional.resize(rgb, (self.new_h, scaled_width), antialias=None)
left = (self.new_w - scaled_width) // 2
right = self.new_w - (scaled_width + left)
rgb = torch.nn.ConstantPad2d((left, right, 0, 0), 0)(rgb)
return rgb
class ResampleResizeLetterboxPad(torch.nn.Module):
def __init__(self, afps, vfps, new_h, new_w) -> None:
super().__init__()
self.transforms = torchvision.transforms.Compose(
[ResampleAudio(new_fps=afps), ResampleRGB(new_fps=vfps), ResizeAndLetterboxPad(new_h=new_h, new_w=new_w)]
)
def forward(self, x: dict) -> dict:
return self.transforms(x)
class DoNothing(torch.nn.Module):
def __init__(self, *args, **kwargs) -> None:
super().__init__()
def forward(self, x: dict) -> dict:
return x
if __name__ == "__main__":
grid = make_class_grid(-1, 1, 21)
grid = make_class_grid(-2, 2, 41)
print("grid:", grid)
print("value quantization:", quantize_offset(grid, 0.06))
v_fps = 25.0
duration = 10.0
input = {
"video": torch.randint(0, 256, (int(duration * v_fps), 3, 720 // 2, 1280 // 2), dtype=torch.uint8),
"audio": torch.arange(221184 - 1).float(),
"targets": {},
"meta": {
"video": {"duration": [duration], "fps": [v_fps]},
"audio": {"duration": [duration], "framerate": [22050.0]},
"subtitles": {"duration": []},
"cc": {"duration": []},
},
"path": "/home/nvme/data/vggsound/video/-5cWCaoEDlE_261000_271000.mp4",
"split": "train",
}
print(input["audio"].shape, input["video"].shape)
fn = EqualifyFromRight(clip_max_len_sec=10)
input = fn(input)
print(input["audio"].shape, input["video"].shape)
fn = RGBSpatialCrop((224, 224), is_random=True)
# fn = RGBSpatialCrop((112, 112), is_random=True)
input = fn(input)
print(input["audio"].shape, input["video"].shape, input["meta"]["audio"])
fn = Resize((224, 224))
input = fn(input)
print(input["audio"].shape, input["video"].shape, input["meta"]["audio"])
fn = GenerateMultipleSegments(
segment_size_vframes=16, n_segments=14, is_start_random=False, audio_jitter_sec=0.05, step_size_seg=0.5
)
input = fn(input)
print(input["audio"].shape, input["video"].shape, input["meta"]["audio"])
fn = RandomApplyColorDistortion(p_gray_scale=0.5, p_color_jitter=0.5, s=1.0)
input = fn(input)
print(input["audio"].shape, input["video"].shape, input["meta"]["audio"])
fn = RGBToFloatToZeroOne()
input = fn(input)
print(input["audio"].shape, input["video"].shape, input["meta"]["audio"])
print(input["meta"])
fn = RGBNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
input = fn(input)
print(input["audio"].shape, input["video"].shape, input["meta"]["audio"])
print(input["video"].mean(dim=(0, 2, 3)))
print(input["meta"])
fn = AudioRandomReverb(p=1.0)
input = fn(input)
fn = AudioRandomVolume(p=1.0, gain=2.0, gain_type="amplitude")
input = fn(input)
print(input["audio"].shape, input["video"].shape, input["meta"]["audio"])
fn = AudioRandomPitchShift(p=1.0, shift=1000)
input = fn(input)
print(input["audio"].shape, input["video"].shape, input["meta"]["audio"])
fn = AudioRandomLowpassFilter(p=1.0, cutoff_freq=100)
input = fn(input)
print(input["audio"].shape, input["video"].shape, input["meta"]["audio"])
fn = AudioRandomGaussNoise(p=1.0, amplitude=0.01)
input = fn(input)
print(input["audio"].shape, input["video"].shape, input["meta"]["audio"])
fn = AudioLog()
input = fn(input)
print(input["audio"].shape, input["video"].shape, input["meta"]["audio"])
# audio only
input = {
"audio": torch.arange(221184).float(),
"meta": {
"video": {"duration": [10.0], "fps": [10.0]},
"audio": {"duration": [11.0], "framerate": [22050.0]},
"subtitles": {"duration": []},
"cc": {"duration": []},
},
"path": "/home/nvme/data/vggsound/video/-5cWCaoEDlE_261000_271000.mp4",
}
print(input["audio"].shape)
fn = AudioLog()
input = fn(input)
print(input["audio"].shape, input["meta"]["audio"])
print(input["meta"])
print(input["audio"].min(), input["audio"].max())
|