Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,869 Bytes
9867d34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import logging
import math
from typing import Any, Mapping
import einops
import numpy as np
import torch
import torchaudio
from torch import nn
from torch.nn import functional as F
from .motionformer import MotionFormer
from .ast_model import AST
from .utils import Config
class Synchformer(nn.Module):
def __init__(self):
super().__init__()
self.vfeat_extractor = MotionFormer(
extract_features=True,
factorize_space_time=True,
agg_space_module="TransformerEncoderLayer",
agg_time_module="torch.nn.Identity",
add_global_repr=False,
)
self.afeat_extractor = AST(
extract_features=True,
max_spec_t=66,
factorize_freq_time=True,
agg_freq_module="TransformerEncoderLayer",
agg_time_module="torch.nn.Identity",
add_global_repr=False,
)
# # bridging the s3d latent dim (1024) into what is specified in the config
# # to match e.g. the transformer dim
self.vproj = nn.Linear(in_features=768, out_features=768)
self.aproj = nn.Linear(in_features=768, out_features=768)
self.transformer = GlobalTransformer(
tok_pdrop=0.0, embd_pdrop=0.1, resid_pdrop=0.1, attn_pdrop=0.1, n_layer=3, n_head=8, n_embd=768
)
def forward(self, vis):
B, S, Tv, C, H, W = vis.shape
vis = vis.permute(0, 1, 3, 2, 4, 5) # (B, S, C, Tv, H, W)
# feat extractors return a tuple of segment-level and global features (ignored for sync)
# (B, S, tv, D), e.g. (B, 7, 8, 768)
vis = self.vfeat_extractor(vis)
return vis
def compare_v_a(self, vis: torch.Tensor, aud: torch.Tensor):
vis = self.vproj(vis)
aud = self.aproj(aud)
B, S, tv, D = vis.shape
B, S, ta, D = aud.shape
vis = vis.view(B, S * tv, D) # (B, S*tv, D)
aud = aud.view(B, S * ta, D) # (B, S*ta, D)
# print(vis.shape, aud.shape)
# self.transformer will concatenate the vis and aud in one sequence with aux tokens,
# ie `CvvvvMaaaaaa`, and will return the logits for the CLS tokens
logits = self.transformer(vis, aud) # (B, cls); or (B, cls) and (B, 2) if DoubtingTransformer
return logits
def extract_vfeats(self, vis):
B, S, Tv, C, H, W = vis.shape
vis = vis.permute(0, 1, 3, 2, 4, 5) # (B, S, C, Tv, H, W)
# feat extractors return a tuple of segment-level and global features (ignored for sync)
# (B, S, tv, D), e.g. (B, 7, 8, 768)
vis = self.vfeat_extractor(vis)
return vis
def extract_afeats(self, aud):
B, S, _, Fa, Ta = aud.shape
aud = aud.view(B, S, Fa, Ta).permute(0, 1, 3, 2) # (B, S, Ta, F)
# (B, S, ta, D), e.g. (B, 7, 6, 768)
aud, _ = self.afeat_extractor(aud)
return aud
def compute_loss(self, logits, targets, loss_fn: str = None):
loss = None
if targets is not None:
if loss_fn is None or loss_fn == "cross_entropy":
# logits: (B, cls) and targets: (B,)
loss = F.cross_entropy(logits, targets)
else:
raise NotImplementedError(f"Loss {loss_fn} not implemented")
return loss
def load_state_dict(self, sd: Mapping[str, Any], strict: bool = True):
# discard all entries except vfeat_extractor
# sd = {k: v for k, v in sd.items() if k.startswith('vfeat_extractor')}
return super().load_state_dict(sd, strict)
class RandInitPositionalEncoding(nn.Module):
"""Random inited trainable pos embedding. It is just applied on the sequence, thus respects no priors."""
def __init__(self, block_shape: list, n_embd: int):
super().__init__()
self.block_shape = block_shape
self.n_embd = n_embd
self.pos_emb = nn.Parameter(torch.randn(1, *block_shape, n_embd))
def forward(self, token_embeddings):
return token_embeddings + self.pos_emb
class GlobalTransformer(torch.nn.Module):
"""Same as in SparseSync but without the selector transformers and the head"""
def __init__(
self,
tok_pdrop=0.0,
embd_pdrop=0.1,
resid_pdrop=0.1,
attn_pdrop=0.1,
n_layer=3,
n_head=8,
n_embd=768,
pos_emb_block_shape=[
198,
],
n_off_head_out=21,
) -> None:
super().__init__()
self.config = Config(
embd_pdrop=embd_pdrop,
resid_pdrop=resid_pdrop,
attn_pdrop=attn_pdrop,
n_layer=n_layer,
n_head=n_head,
n_embd=n_embd,
)
# input norm
self.vis_in_lnorm = torch.nn.LayerNorm(n_embd)
self.aud_in_lnorm = torch.nn.LayerNorm(n_embd)
# aux tokens
self.OFF_tok = torch.nn.Parameter(torch.randn(1, 1, n_embd))
self.MOD_tok = torch.nn.Parameter(torch.randn(1, 1, n_embd))
# whole token dropout
self.tok_pdrop = tok_pdrop
self.tok_drop_vis = torch.nn.Dropout1d(tok_pdrop)
self.tok_drop_aud = torch.nn.Dropout1d(tok_pdrop)
# maybe add pos emb
self.pos_emb_cfg = RandInitPositionalEncoding(
block_shape=pos_emb_block_shape,
n_embd=n_embd,
)
# the stem
self.drop = torch.nn.Dropout(embd_pdrop)
self.blocks = torch.nn.Sequential(*[Block(self.config) for _ in range(n_layer)])
# pre-output norm
self.ln_f = torch.nn.LayerNorm(n_embd)
# maybe add a head
self.off_head = torch.nn.Linear(in_features=n_embd, out_features=n_off_head_out)
def forward(self, v: torch.Tensor, a: torch.Tensor, targets=None, attempt_to_apply_heads=True):
B, Sv, D = v.shape
B, Sa, D = a.shape
# broadcasting special tokens to the batch size
off_tok = einops.repeat(self.OFF_tok, "1 1 d -> b 1 d", b=B)
mod_tok = einops.repeat(self.MOD_tok, "1 1 d -> b 1 d", b=B)
# norm
v, a = self.vis_in_lnorm(v), self.aud_in_lnorm(a)
# maybe whole token dropout
if self.tok_pdrop > 0:
v, a = self.tok_drop_vis(v), self.tok_drop_aud(a)
# (B, 1+Sv+1+Sa, D)
x = torch.cat((off_tok, v, mod_tok, a), dim=1)
# maybe add pos emb
if hasattr(self, "pos_emb_cfg"):
x = self.pos_emb_cfg(x)
# dropout -> stem -> norm
x = self.drop(x)
x = self.blocks(x)
x = self.ln_f(x)
# maybe add heads
if attempt_to_apply_heads and hasattr(self, "off_head"):
x = self.off_head(x[:, 0, :])
return x
class SelfAttention(nn.Module):
"""
A vanilla multi-head masked self-attention layer with a projection at the end.
It is possible to use torch.nn.MultiheadAttention here but I am including an
explicit implementation here to show that there is nothing too scary here.
"""
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
# key, query, value projections for all heads
self.key = nn.Linear(config.n_embd, config.n_embd)
self.query = nn.Linear(config.n_embd, config.n_embd)
self.value = nn.Linear(config.n_embd, config.n_embd)
# regularization
self.attn_drop = nn.Dropout(config.attn_pdrop)
self.resid_drop = nn.Dropout(config.resid_pdrop)
# output projection
self.proj = nn.Linear(config.n_embd, config.n_embd)
# # causal mask to ensure that attention is only applied to the left in the input sequence
# mask = torch.tril(torch.ones(config.block_size,
# config.block_size))
# if hasattr(config, "n_unmasked"):
# mask[:config.n_unmasked, :config.n_unmasked] = 1
# self.register_buffer("mask", mask.view(1, 1, config.block_size, config.block_size))
self.n_head = config.n_head
def forward(self, x):
B, T, C = x.size()
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
# self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
# att = att.masked_fill(self.mask[:, :, :T, :T] == 0, float('-inf'))
att = F.softmax(att, dim=-1)
y = self.attn_drop(att) @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.resid_drop(self.proj(y))
return y
class Block(nn.Module):
"""an unassuming Transformer block"""
def __init__(self, config):
super().__init__()
self.ln1 = nn.LayerNorm(config.n_embd)
self.ln2 = nn.LayerNorm(config.n_embd)
self.attn = SelfAttention(config)
self.mlp = nn.Sequential(
nn.Linear(config.n_embd, 4 * config.n_embd),
nn.GELU(), # nice
nn.Linear(4 * config.n_embd, config.n_embd),
nn.Dropout(config.resid_pdrop),
)
def forward(self, x):
x = x + self.attn(self.ln1(x))
x = x + self.mlp(self.ln2(x))
return x
def make_class_grid(
leftmost_val,
rightmost_val,
grid_size,
add_extreme_offset: bool = False,
seg_size_vframes: int = None,
nseg: int = None,
step_size_seg: float = None,
vfps: float = None,
):
assert grid_size >= 3, f"grid_size: {grid_size} doesnot make sense. If =2 -> (-1,1); =1 -> (-1); =0 -> ()"
grid = torch.from_numpy(np.linspace(leftmost_val, rightmost_val, grid_size)).float()
if add_extreme_offset:
assert all([seg_size_vframes, nseg, step_size_seg]), f"{seg_size_vframes} {nseg} {step_size_seg}"
seg_size_sec = seg_size_vframes / vfps
trim_size_in_seg = nseg - (1 - step_size_seg) * (nseg - 1)
extreme_value = trim_size_in_seg * seg_size_sec
grid = torch.cat([grid, torch.tensor([extreme_value])]) # adding extreme offset to the class grid
return grid
# from synchformer
def pad_or_truncate(audio: torch.Tensor, max_spec_t: int, pad_mode: str = "constant", pad_value: float = 0.0):
difference = max_spec_t - audio.shape[-1] # safe for batched input
# pad or truncate, depending on difference
if difference > 0:
# pad the last dim (time) -> (..., n_mels, 0+time+difference) # safe for batched input
pad_dims = (0, difference)
audio = torch.nn.functional.pad(audio, pad_dims, pad_mode, pad_value)
elif difference < 0:
print(f"Truncating spec ({audio.shape}) to max_spec_t ({max_spec_t}).")
audio = audio[..., :max_spec_t] # safe for batched input
return audio
def encode_audio_with_sync(
synchformer: Synchformer, x: torch.Tensor, mel: torchaudio.transforms.MelSpectrogram
) -> torch.Tensor:
b, t = x.shape
# partition the video
segment_size = 10240
step_size = 10240 // 2
num_segments = (t - segment_size) // step_size + 1
segments = []
for i in range(num_segments):
segments.append(x[:, i * step_size : i * step_size + segment_size])
x = torch.stack(segments, dim=1) # (B, S, T, C, H, W)
x = mel(x)
x = torch.log(x + 1e-6)
x = pad_or_truncate(x, 66)
mean = -4.2677393
std = 4.5689974
x = (x - mean) / (2 * std)
# x: B * S * 128 * 66
x = synchformer.extract_afeats(x.unsqueeze(2))
return x
def read_audio(filename, expected_length=int(16000 * 4)):
waveform, sr = torchaudio.load(filename)
waveform = waveform.mean(dim=0)
if sr != 16000:
resampler = torchaudio.transforms.Resample(sr, 16000)
waveform = resampler[sr](waveform)
waveform = waveform[:expected_length]
if waveform.shape[0] != expected_length:
raise ValueError(f"Audio {filename} is too short")
waveform = waveform.squeeze()
return waveform
if __name__ == "__main__":
synchformer = Synchformer().cuda().eval()
# mmaudio provided synchformer ckpt
synchformer.load_state_dict(
torch.load(
os.environ.get("SYNCHFORMER_WEIGHTS", f"weights/synchformer.pth"),
weights_only=True,
map_location="cpu",
)
)
sync_mel_spectrogram = torchaudio.transforms.MelSpectrogram(
sample_rate=16000,
win_length=400,
hop_length=160,
n_fft=1024,
n_mels=128,
)
|