File size: 12,869 Bytes
9867d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import logging
import math
from typing import Any, Mapping

import einops
import numpy as np
import torch
import torchaudio
from torch import nn
from torch.nn import functional as F

from .motionformer import MotionFormer
from .ast_model import AST
from .utils import Config


class Synchformer(nn.Module):

    def __init__(self):
        super().__init__()

        self.vfeat_extractor = MotionFormer(
            extract_features=True,
            factorize_space_time=True,
            agg_space_module="TransformerEncoderLayer",
            agg_time_module="torch.nn.Identity",
            add_global_repr=False,
        )
        self.afeat_extractor = AST(
            extract_features=True,
            max_spec_t=66,
            factorize_freq_time=True,
            agg_freq_module="TransformerEncoderLayer",
            agg_time_module="torch.nn.Identity",
            add_global_repr=False,
        )

        # # bridging the s3d latent dim (1024) into what is specified in the config
        # # to match e.g. the transformer dim
        self.vproj = nn.Linear(in_features=768, out_features=768)
        self.aproj = nn.Linear(in_features=768, out_features=768)
        self.transformer = GlobalTransformer(
            tok_pdrop=0.0, embd_pdrop=0.1, resid_pdrop=0.1, attn_pdrop=0.1, n_layer=3, n_head=8, n_embd=768
        )

    def forward(self, vis):
        B, S, Tv, C, H, W = vis.shape
        vis = vis.permute(0, 1, 3, 2, 4, 5)  # (B, S, C, Tv, H, W)
        # feat extractors return a tuple of segment-level and global features (ignored for sync)
        # (B, S, tv, D), e.g. (B, 7, 8, 768)
        vis = self.vfeat_extractor(vis)
        return vis

    def compare_v_a(self, vis: torch.Tensor, aud: torch.Tensor):
        vis = self.vproj(vis)
        aud = self.aproj(aud)

        B, S, tv, D = vis.shape
        B, S, ta, D = aud.shape
        vis = vis.view(B, S * tv, D)  # (B, S*tv, D)
        aud = aud.view(B, S * ta, D)  # (B, S*ta, D)
        # print(vis.shape, aud.shape)

        # self.transformer will concatenate the vis and aud in one sequence with aux tokens,
        # ie `CvvvvMaaaaaa`, and will return the logits for the CLS tokens
        logits = self.transformer(vis, aud)  # (B, cls); or (B, cls) and (B, 2) if DoubtingTransformer

        return logits

    def extract_vfeats(self, vis):
        B, S, Tv, C, H, W = vis.shape
        vis = vis.permute(0, 1, 3, 2, 4, 5)  # (B, S, C, Tv, H, W)
        # feat extractors return a tuple of segment-level and global features (ignored for sync)
        # (B, S, tv, D), e.g. (B, 7, 8, 768)
        vis = self.vfeat_extractor(vis)
        return vis

    def extract_afeats(self, aud):
        B, S, _, Fa, Ta = aud.shape
        aud = aud.view(B, S, Fa, Ta).permute(0, 1, 3, 2)  # (B, S, Ta, F)
        # (B, S, ta, D), e.g. (B, 7, 6, 768)
        aud, _ = self.afeat_extractor(aud)
        return aud

    def compute_loss(self, logits, targets, loss_fn: str = None):
        loss = None
        if targets is not None:
            if loss_fn is None or loss_fn == "cross_entropy":
                # logits: (B, cls) and targets: (B,)
                loss = F.cross_entropy(logits, targets)
            else:
                raise NotImplementedError(f"Loss {loss_fn} not implemented")
        return loss

    def load_state_dict(self, sd: Mapping[str, Any], strict: bool = True):
        # discard all entries except vfeat_extractor
        # sd = {k: v for k, v in sd.items() if k.startswith('vfeat_extractor')}

        return super().load_state_dict(sd, strict)


class RandInitPositionalEncoding(nn.Module):
    """Random inited trainable pos embedding. It is just applied on the sequence, thus respects no priors."""

    def __init__(self, block_shape: list, n_embd: int):
        super().__init__()
        self.block_shape = block_shape
        self.n_embd = n_embd
        self.pos_emb = nn.Parameter(torch.randn(1, *block_shape, n_embd))

    def forward(self, token_embeddings):
        return token_embeddings + self.pos_emb


class GlobalTransformer(torch.nn.Module):
    """Same as in SparseSync but without the selector transformers and the head"""

    def __init__(
        self,
        tok_pdrop=0.0,
        embd_pdrop=0.1,
        resid_pdrop=0.1,
        attn_pdrop=0.1,
        n_layer=3,
        n_head=8,
        n_embd=768,
        pos_emb_block_shape=[
            198,
        ],
        n_off_head_out=21,
    ) -> None:
        super().__init__()
        self.config = Config(
            embd_pdrop=embd_pdrop,
            resid_pdrop=resid_pdrop,
            attn_pdrop=attn_pdrop,
            n_layer=n_layer,
            n_head=n_head,
            n_embd=n_embd,
        )
        # input norm
        self.vis_in_lnorm = torch.nn.LayerNorm(n_embd)
        self.aud_in_lnorm = torch.nn.LayerNorm(n_embd)
        # aux tokens
        self.OFF_tok = torch.nn.Parameter(torch.randn(1, 1, n_embd))
        self.MOD_tok = torch.nn.Parameter(torch.randn(1, 1, n_embd))
        # whole token dropout
        self.tok_pdrop = tok_pdrop
        self.tok_drop_vis = torch.nn.Dropout1d(tok_pdrop)
        self.tok_drop_aud = torch.nn.Dropout1d(tok_pdrop)
        # maybe add pos emb
        self.pos_emb_cfg = RandInitPositionalEncoding(
            block_shape=pos_emb_block_shape,
            n_embd=n_embd,
        )
        # the stem
        self.drop = torch.nn.Dropout(embd_pdrop)
        self.blocks = torch.nn.Sequential(*[Block(self.config) for _ in range(n_layer)])
        # pre-output norm
        self.ln_f = torch.nn.LayerNorm(n_embd)
        # maybe add a head
        self.off_head = torch.nn.Linear(in_features=n_embd, out_features=n_off_head_out)

    def forward(self, v: torch.Tensor, a: torch.Tensor, targets=None, attempt_to_apply_heads=True):
        B, Sv, D = v.shape
        B, Sa, D = a.shape
        # broadcasting special tokens to the batch size
        off_tok = einops.repeat(self.OFF_tok, "1 1 d -> b 1 d", b=B)
        mod_tok = einops.repeat(self.MOD_tok, "1 1 d -> b 1 d", b=B)
        # norm
        v, a = self.vis_in_lnorm(v), self.aud_in_lnorm(a)
        # maybe whole token dropout
        if self.tok_pdrop > 0:
            v, a = self.tok_drop_vis(v), self.tok_drop_aud(a)
        # (B, 1+Sv+1+Sa, D)
        x = torch.cat((off_tok, v, mod_tok, a), dim=1)
        # maybe add pos emb
        if hasattr(self, "pos_emb_cfg"):
            x = self.pos_emb_cfg(x)
        # dropout -> stem -> norm
        x = self.drop(x)
        x = self.blocks(x)
        x = self.ln_f(x)
        # maybe add heads
        if attempt_to_apply_heads and hasattr(self, "off_head"):
            x = self.off_head(x[:, 0, :])
        return x


class SelfAttention(nn.Module):
    """
    A vanilla multi-head masked self-attention layer with a projection at the end.
    It is possible to use torch.nn.MultiheadAttention here but I am including an
    explicit implementation here to show that there is nothing too scary here.
    """

    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        # key, query, value projections for all heads
        self.key = nn.Linear(config.n_embd, config.n_embd)
        self.query = nn.Linear(config.n_embd, config.n_embd)
        self.value = nn.Linear(config.n_embd, config.n_embd)
        # regularization
        self.attn_drop = nn.Dropout(config.attn_pdrop)
        self.resid_drop = nn.Dropout(config.resid_pdrop)
        # output projection
        self.proj = nn.Linear(config.n_embd, config.n_embd)
        # # causal mask to ensure that attention is only applied to the left in the input sequence
        # mask = torch.tril(torch.ones(config.block_size,
        #                              config.block_size))
        # if hasattr(config, "n_unmasked"):
        #     mask[:config.n_unmasked, :config.n_unmasked] = 1
        # self.register_buffer("mask", mask.view(1, 1, config.block_size, config.block_size))
        self.n_head = config.n_head

    def forward(self, x):
        B, T, C = x.size()

        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2)  # (B, nh, T, hs)
        q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2)  # (B, nh, T, hs)
        v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2)  # (B, nh, T, hs)

        # self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
        att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
        # att = att.masked_fill(self.mask[:, :, :T, :T] == 0, float('-inf'))
        att = F.softmax(att, dim=-1)
        y = self.attn_drop(att) @ v  # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
        y = y.transpose(1, 2).contiguous().view(B, T, C)  # re-assemble all head outputs side by side

        # output projection
        y = self.resid_drop(self.proj(y))

        return y


class Block(nn.Module):
    """an unassuming Transformer block"""

    def __init__(self, config):
        super().__init__()
        self.ln1 = nn.LayerNorm(config.n_embd)
        self.ln2 = nn.LayerNorm(config.n_embd)
        self.attn = SelfAttention(config)
        self.mlp = nn.Sequential(
            nn.Linear(config.n_embd, 4 * config.n_embd),
            nn.GELU(),  # nice
            nn.Linear(4 * config.n_embd, config.n_embd),
            nn.Dropout(config.resid_pdrop),
        )

    def forward(self, x):
        x = x + self.attn(self.ln1(x))
        x = x + self.mlp(self.ln2(x))
        return x


def make_class_grid(
    leftmost_val,
    rightmost_val,
    grid_size,
    add_extreme_offset: bool = False,
    seg_size_vframes: int = None,
    nseg: int = None,
    step_size_seg: float = None,
    vfps: float = None,
):
    assert grid_size >= 3, f"grid_size: {grid_size} doesnot make sense. If =2 -> (-1,1); =1 -> (-1); =0 -> ()"
    grid = torch.from_numpy(np.linspace(leftmost_val, rightmost_val, grid_size)).float()
    if add_extreme_offset:
        assert all([seg_size_vframes, nseg, step_size_seg]), f"{seg_size_vframes} {nseg} {step_size_seg}"
        seg_size_sec = seg_size_vframes / vfps
        trim_size_in_seg = nseg - (1 - step_size_seg) * (nseg - 1)
        extreme_value = trim_size_in_seg * seg_size_sec
        grid = torch.cat([grid, torch.tensor([extreme_value])])  # adding extreme offset to the class grid
    return grid


# from synchformer
def pad_or_truncate(audio: torch.Tensor, max_spec_t: int, pad_mode: str = "constant", pad_value: float = 0.0):
    difference = max_spec_t - audio.shape[-1]  # safe for batched input
    # pad or truncate, depending on difference
    if difference > 0:
        # pad the last dim (time) -> (..., n_mels, 0+time+difference)  # safe for batched input
        pad_dims = (0, difference)
        audio = torch.nn.functional.pad(audio, pad_dims, pad_mode, pad_value)
    elif difference < 0:
        print(f"Truncating spec ({audio.shape}) to max_spec_t ({max_spec_t}).")
        audio = audio[..., :max_spec_t]  # safe for batched input
    return audio


def encode_audio_with_sync(
    synchformer: Synchformer, x: torch.Tensor, mel: torchaudio.transforms.MelSpectrogram
) -> torch.Tensor:
    b, t = x.shape

    # partition the video
    segment_size = 10240
    step_size = 10240 // 2
    num_segments = (t - segment_size) // step_size + 1
    segments = []
    for i in range(num_segments):
        segments.append(x[:, i * step_size : i * step_size + segment_size])
    x = torch.stack(segments, dim=1)  # (B, S, T, C, H, W)

    x = mel(x)
    x = torch.log(x + 1e-6)
    x = pad_or_truncate(x, 66)

    mean = -4.2677393
    std = 4.5689974
    x = (x - mean) / (2 * std)
    # x: B * S * 128 * 66
    x = synchformer.extract_afeats(x.unsqueeze(2))
    return x


def read_audio(filename, expected_length=int(16000 * 4)):
    waveform, sr = torchaudio.load(filename)
    waveform = waveform.mean(dim=0)

    if sr != 16000:
        resampler = torchaudio.transforms.Resample(sr, 16000)
        waveform = resampler[sr](waveform)

    waveform = waveform[:expected_length]
    if waveform.shape[0] != expected_length:
        raise ValueError(f"Audio {filename} is too short")

    waveform = waveform.squeeze()

    return waveform


if __name__ == "__main__":
    synchformer = Synchformer().cuda().eval()

    # mmaudio provided synchformer ckpt
    synchformer.load_state_dict(
        torch.load(
            os.environ.get("SYNCHFORMER_WEIGHTS", f"weights/synchformer.pth"),
            weights_only=True,
            map_location="cpu",
        )
    )

    sync_mel_spectrogram = torchaudio.transforms.MelSpectrogram(
        sample_rate=16000,
        win_length=400,
        hop_length=160,
        n_fft=1024,
        n_mels=128,
    )