James Zhou
[init]
9867d34
raw
history blame
12.9 kB
import logging
import math
from typing import Any, Mapping
import einops
import numpy as np
import torch
import torchaudio
from torch import nn
from torch.nn import functional as F
from .motionformer import MotionFormer
from .ast_model import AST
from .utils import Config
class Synchformer(nn.Module):
def __init__(self):
super().__init__()
self.vfeat_extractor = MotionFormer(
extract_features=True,
factorize_space_time=True,
agg_space_module="TransformerEncoderLayer",
agg_time_module="torch.nn.Identity",
add_global_repr=False,
)
self.afeat_extractor = AST(
extract_features=True,
max_spec_t=66,
factorize_freq_time=True,
agg_freq_module="TransformerEncoderLayer",
agg_time_module="torch.nn.Identity",
add_global_repr=False,
)
# # bridging the s3d latent dim (1024) into what is specified in the config
# # to match e.g. the transformer dim
self.vproj = nn.Linear(in_features=768, out_features=768)
self.aproj = nn.Linear(in_features=768, out_features=768)
self.transformer = GlobalTransformer(
tok_pdrop=0.0, embd_pdrop=0.1, resid_pdrop=0.1, attn_pdrop=0.1, n_layer=3, n_head=8, n_embd=768
)
def forward(self, vis):
B, S, Tv, C, H, W = vis.shape
vis = vis.permute(0, 1, 3, 2, 4, 5) # (B, S, C, Tv, H, W)
# feat extractors return a tuple of segment-level and global features (ignored for sync)
# (B, S, tv, D), e.g. (B, 7, 8, 768)
vis = self.vfeat_extractor(vis)
return vis
def compare_v_a(self, vis: torch.Tensor, aud: torch.Tensor):
vis = self.vproj(vis)
aud = self.aproj(aud)
B, S, tv, D = vis.shape
B, S, ta, D = aud.shape
vis = vis.view(B, S * tv, D) # (B, S*tv, D)
aud = aud.view(B, S * ta, D) # (B, S*ta, D)
# print(vis.shape, aud.shape)
# self.transformer will concatenate the vis and aud in one sequence with aux tokens,
# ie `CvvvvMaaaaaa`, and will return the logits for the CLS tokens
logits = self.transformer(vis, aud) # (B, cls); or (B, cls) and (B, 2) if DoubtingTransformer
return logits
def extract_vfeats(self, vis):
B, S, Tv, C, H, W = vis.shape
vis = vis.permute(0, 1, 3, 2, 4, 5) # (B, S, C, Tv, H, W)
# feat extractors return a tuple of segment-level and global features (ignored for sync)
# (B, S, tv, D), e.g. (B, 7, 8, 768)
vis = self.vfeat_extractor(vis)
return vis
def extract_afeats(self, aud):
B, S, _, Fa, Ta = aud.shape
aud = aud.view(B, S, Fa, Ta).permute(0, 1, 3, 2) # (B, S, Ta, F)
# (B, S, ta, D), e.g. (B, 7, 6, 768)
aud, _ = self.afeat_extractor(aud)
return aud
def compute_loss(self, logits, targets, loss_fn: str = None):
loss = None
if targets is not None:
if loss_fn is None or loss_fn == "cross_entropy":
# logits: (B, cls) and targets: (B,)
loss = F.cross_entropy(logits, targets)
else:
raise NotImplementedError(f"Loss {loss_fn} not implemented")
return loss
def load_state_dict(self, sd: Mapping[str, Any], strict: bool = True):
# discard all entries except vfeat_extractor
# sd = {k: v for k, v in sd.items() if k.startswith('vfeat_extractor')}
return super().load_state_dict(sd, strict)
class RandInitPositionalEncoding(nn.Module):
"""Random inited trainable pos embedding. It is just applied on the sequence, thus respects no priors."""
def __init__(self, block_shape: list, n_embd: int):
super().__init__()
self.block_shape = block_shape
self.n_embd = n_embd
self.pos_emb = nn.Parameter(torch.randn(1, *block_shape, n_embd))
def forward(self, token_embeddings):
return token_embeddings + self.pos_emb
class GlobalTransformer(torch.nn.Module):
"""Same as in SparseSync but without the selector transformers and the head"""
def __init__(
self,
tok_pdrop=0.0,
embd_pdrop=0.1,
resid_pdrop=0.1,
attn_pdrop=0.1,
n_layer=3,
n_head=8,
n_embd=768,
pos_emb_block_shape=[
198,
],
n_off_head_out=21,
) -> None:
super().__init__()
self.config = Config(
embd_pdrop=embd_pdrop,
resid_pdrop=resid_pdrop,
attn_pdrop=attn_pdrop,
n_layer=n_layer,
n_head=n_head,
n_embd=n_embd,
)
# input norm
self.vis_in_lnorm = torch.nn.LayerNorm(n_embd)
self.aud_in_lnorm = torch.nn.LayerNorm(n_embd)
# aux tokens
self.OFF_tok = torch.nn.Parameter(torch.randn(1, 1, n_embd))
self.MOD_tok = torch.nn.Parameter(torch.randn(1, 1, n_embd))
# whole token dropout
self.tok_pdrop = tok_pdrop
self.tok_drop_vis = torch.nn.Dropout1d(tok_pdrop)
self.tok_drop_aud = torch.nn.Dropout1d(tok_pdrop)
# maybe add pos emb
self.pos_emb_cfg = RandInitPositionalEncoding(
block_shape=pos_emb_block_shape,
n_embd=n_embd,
)
# the stem
self.drop = torch.nn.Dropout(embd_pdrop)
self.blocks = torch.nn.Sequential(*[Block(self.config) for _ in range(n_layer)])
# pre-output norm
self.ln_f = torch.nn.LayerNorm(n_embd)
# maybe add a head
self.off_head = torch.nn.Linear(in_features=n_embd, out_features=n_off_head_out)
def forward(self, v: torch.Tensor, a: torch.Tensor, targets=None, attempt_to_apply_heads=True):
B, Sv, D = v.shape
B, Sa, D = a.shape
# broadcasting special tokens to the batch size
off_tok = einops.repeat(self.OFF_tok, "1 1 d -> b 1 d", b=B)
mod_tok = einops.repeat(self.MOD_tok, "1 1 d -> b 1 d", b=B)
# norm
v, a = self.vis_in_lnorm(v), self.aud_in_lnorm(a)
# maybe whole token dropout
if self.tok_pdrop > 0:
v, a = self.tok_drop_vis(v), self.tok_drop_aud(a)
# (B, 1+Sv+1+Sa, D)
x = torch.cat((off_tok, v, mod_tok, a), dim=1)
# maybe add pos emb
if hasattr(self, "pos_emb_cfg"):
x = self.pos_emb_cfg(x)
# dropout -> stem -> norm
x = self.drop(x)
x = self.blocks(x)
x = self.ln_f(x)
# maybe add heads
if attempt_to_apply_heads and hasattr(self, "off_head"):
x = self.off_head(x[:, 0, :])
return x
class SelfAttention(nn.Module):
"""
A vanilla multi-head masked self-attention layer with a projection at the end.
It is possible to use torch.nn.MultiheadAttention here but I am including an
explicit implementation here to show that there is nothing too scary here.
"""
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
# key, query, value projections for all heads
self.key = nn.Linear(config.n_embd, config.n_embd)
self.query = nn.Linear(config.n_embd, config.n_embd)
self.value = nn.Linear(config.n_embd, config.n_embd)
# regularization
self.attn_drop = nn.Dropout(config.attn_pdrop)
self.resid_drop = nn.Dropout(config.resid_pdrop)
# output projection
self.proj = nn.Linear(config.n_embd, config.n_embd)
# # causal mask to ensure that attention is only applied to the left in the input sequence
# mask = torch.tril(torch.ones(config.block_size,
# config.block_size))
# if hasattr(config, "n_unmasked"):
# mask[:config.n_unmasked, :config.n_unmasked] = 1
# self.register_buffer("mask", mask.view(1, 1, config.block_size, config.block_size))
self.n_head = config.n_head
def forward(self, x):
B, T, C = x.size()
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
# self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
# att = att.masked_fill(self.mask[:, :, :T, :T] == 0, float('-inf'))
att = F.softmax(att, dim=-1)
y = self.attn_drop(att) @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.resid_drop(self.proj(y))
return y
class Block(nn.Module):
"""an unassuming Transformer block"""
def __init__(self, config):
super().__init__()
self.ln1 = nn.LayerNorm(config.n_embd)
self.ln2 = nn.LayerNorm(config.n_embd)
self.attn = SelfAttention(config)
self.mlp = nn.Sequential(
nn.Linear(config.n_embd, 4 * config.n_embd),
nn.GELU(), # nice
nn.Linear(4 * config.n_embd, config.n_embd),
nn.Dropout(config.resid_pdrop),
)
def forward(self, x):
x = x + self.attn(self.ln1(x))
x = x + self.mlp(self.ln2(x))
return x
def make_class_grid(
leftmost_val,
rightmost_val,
grid_size,
add_extreme_offset: bool = False,
seg_size_vframes: int = None,
nseg: int = None,
step_size_seg: float = None,
vfps: float = None,
):
assert grid_size >= 3, f"grid_size: {grid_size} doesnot make sense. If =2 -> (-1,1); =1 -> (-1); =0 -> ()"
grid = torch.from_numpy(np.linspace(leftmost_val, rightmost_val, grid_size)).float()
if add_extreme_offset:
assert all([seg_size_vframes, nseg, step_size_seg]), f"{seg_size_vframes} {nseg} {step_size_seg}"
seg_size_sec = seg_size_vframes / vfps
trim_size_in_seg = nseg - (1 - step_size_seg) * (nseg - 1)
extreme_value = trim_size_in_seg * seg_size_sec
grid = torch.cat([grid, torch.tensor([extreme_value])]) # adding extreme offset to the class grid
return grid
# from synchformer
def pad_or_truncate(audio: torch.Tensor, max_spec_t: int, pad_mode: str = "constant", pad_value: float = 0.0):
difference = max_spec_t - audio.shape[-1] # safe for batched input
# pad or truncate, depending on difference
if difference > 0:
# pad the last dim (time) -> (..., n_mels, 0+time+difference) # safe for batched input
pad_dims = (0, difference)
audio = torch.nn.functional.pad(audio, pad_dims, pad_mode, pad_value)
elif difference < 0:
print(f"Truncating spec ({audio.shape}) to max_spec_t ({max_spec_t}).")
audio = audio[..., :max_spec_t] # safe for batched input
return audio
def encode_audio_with_sync(
synchformer: Synchformer, x: torch.Tensor, mel: torchaudio.transforms.MelSpectrogram
) -> torch.Tensor:
b, t = x.shape
# partition the video
segment_size = 10240
step_size = 10240 // 2
num_segments = (t - segment_size) // step_size + 1
segments = []
for i in range(num_segments):
segments.append(x[:, i * step_size : i * step_size + segment_size])
x = torch.stack(segments, dim=1) # (B, S, T, C, H, W)
x = mel(x)
x = torch.log(x + 1e-6)
x = pad_or_truncate(x, 66)
mean = -4.2677393
std = 4.5689974
x = (x - mean) / (2 * std)
# x: B * S * 128 * 66
x = synchformer.extract_afeats(x.unsqueeze(2))
return x
def read_audio(filename, expected_length=int(16000 * 4)):
waveform, sr = torchaudio.load(filename)
waveform = waveform.mean(dim=0)
if sr != 16000:
resampler = torchaudio.transforms.Resample(sr, 16000)
waveform = resampler[sr](waveform)
waveform = waveform[:expected_length]
if waveform.shape[0] != expected_length:
raise ValueError(f"Audio {filename} is too short")
waveform = waveform.squeeze()
return waveform
if __name__ == "__main__":
synchformer = Synchformer().cuda().eval()
# mmaudio provided synchformer ckpt
synchformer.load_state_dict(
torch.load(
os.environ.get("SYNCHFORMER_WEIGHTS", f"weights/synchformer.pth"),
weights_only=True,
map_location="cpu",
)
)
sync_mel_spectrogram = torchaudio.transforms.MelSpectrogram(
sample_rate=16000,
win_length=400,
hop_length=160,
n_fft=1024,
n_mels=128,
)