James Zhou
[init]
9867d34
import logging
import torch
from transformers.modeling_outputs import BaseModelOutputWithPooling
from .modeling_ast import ASTForAudioClassification, ASTConfig
from .motionformer import AveragePooling, BaseEncoderLayer, TemporalTransformerEncoderLayer
from .utils import check_if_file_exists_else_download
class AST(torch.nn.Module):
def __init__(
self,
extract_features: bool = False,
ckpt_path: str = None,
feat_type: str = None,
max_spec_t: int = None,
factorize_freq_time: bool = None,
agg_freq_module: str = None,
agg_time_module: str = None,
add_global_repr: bool = True,
agg_segments_module: str = None,
max_segments: int = None,
) -> None:
"""
extract_features: if True, then the model will return the features instead of head's output
ckpt_path: is not a path to a ckpt file, but a name of a model from the HuggingFace model hub.
feat_type: if extract_features is True, this parameter specifies the type of features to return
max_spec_t: if specified, then the model (pos emb) will be patched to support this length of spec
factorize_freq_time: if True, then the model will use a factorized freq/time aggregation
agg_freq_module: if specified, then the model will use this module for freq aggregation
agg_time_module: if specified, then the model will use this module for time aggregation
add_global_repr: if True, adds a global representation to the features (aggregation on segments)
agg_segments_module: if specified, then the model will use this module for segments aggregation
max_segments: if specified, the initialization of PE in the global agg module will use this value.
This should correspond to the max number of segments per video (if None, 16 is used)
"""
super().__init__()
self.extract_features = extract_features
self.ckpt_path = ckpt_path
self.max_spec_t = max_spec_t
self.max_segments = max_segments
# depending on whether the feat extractor was pre-trained contrastively or not, we need to
# load the state dict differently.
# if ckpt is specified, then load the model from the HuggingFace model hub, otherwise init a new model
if ckpt_path == "MIT/ast-finetuned-audioset-10-10-0.4593":
revision = "c1c0c66" # fixing the revision for compatibility (V4.27.4)
self.config = ASTConfig.from_pretrained(ckpt_path, revision=revision)
full_model = ASTForAudioClassification.from_pretrained(ckpt_path, revision=revision)
logging.info(f"Loaded AST from {ckpt_path}")
else:
self.config = ASTConfig()
self.config.num_labels = 527 # 2 by default, audioset has 527 labels
full_model = ASTForAudioClassification(self.config)
logging.info("Initialized AST from scratch with the AST AudioSet config")
was_pt_on_avclip = ckpt_path is not None and ckpt_path.endswith(".pt")
# feature extractor
self.ast = full_model.audio_spectrogram_transformer
if self.extract_features:
# assign `feat_type` (use default if not specified)
self.feat_type = "last_hidden_state" if feat_type is None else feat_type
# define adapters if needed
self.factorize_freq_time = factorize_freq_time
# avoiding code duplication (used only if agg_*_module is TransformerEncoderLayer)
transf_enc_layer_kwargs = dict(
d_model=self.config.hidden_size,
nhead=self.config.num_attention_heads,
dim_feedforward=self.config.intermediate_size,
activation=torch.nn.GELU(),
batch_first=True,
dropout=self.config.attention_probs_dropout_prob,
layer_norm_eps=1e-6,
norm_first=True,
)
if factorize_freq_time:
self.feat_type = "last_hidden_state" # this feat_type supports factorization
# frequency aggreration
if agg_freq_module == "TransformerEncoderLayer":
self.freq_attn_agg = FrequencyTransformerEncoderLayer(**transf_enc_layer_kwargs)
elif agg_freq_module == "AveragePooling":
self.freq_attn_agg = AveragePooling(
avg_pattern="BS D f t -> BS D t", then_permute_pattern="BS D t -> BS t D"
)
# time aggreration
if agg_time_module == "TransformerEncoderLayer":
self.temp_attn_agg = TemporalTransformerEncoderLayer(**transf_enc_layer_kwargs)
elif agg_time_module == "AveragePooling":
self.temp_attn_agg = AveragePooling(avg_pattern="BS t D -> BS D")
elif "Identity" in agg_time_module:
self.temp_attn_agg = torch.nn.Identity()
# define a global aggregation layer (aggregarate over segments)
self.add_global_repr = add_global_repr
if add_global_repr:
if agg_segments_module == "TransformerEncoderLayer":
# we can reuse the same layer as for temporal factorization (B, dim_to_agg, D) -> (B, D)
# we need to add pos emb (PE) because previously we added the same PE for each segment
pos_max_len = max_segments if max_segments is not None else 16 # 16 = 10sec//0.64sec + 1
self.global_attn_agg = TemporalTransformerEncoderLayer(
add_pos_emb=True,
pos_emb_drop=self.config.hidden_dropout_prob,
pos_max_len=pos_max_len,
**transf_enc_layer_kwargs,
)
elif agg_segments_module == "AveragePooling":
self.global_attn_agg = AveragePooling(avg_pattern="B S D -> B D")
else:
self.classifier = full_model.classifier
# AST.device fails with AttributeError. This is a workaround
self.device = full_model.device
# pre-trained on 12*101+2=1214 tokens, but we have less (e.g. 12*6+2=74)
self.patch_position_emb()
if was_pt_on_avclip:
# we need to filter out the state_dict of the AVCLIP model (has both A and V extractors)
# and keep only the state_dict of the feat extractor
check_if_file_exists_else_download(self.ckpt_path)
ckpt = torch.load(ckpt_path, map_location="cpu")
ckpt_weights = dict()
for k, v in ckpt["state_dict"].items():
if k.startswith(("module.a_encoder.", "a_encoder.")):
k = k.replace("module.", "").replace("a_encoder.", "")
ckpt_weights[k] = v
_load_status = self.load_state_dict(ckpt_weights, strict=False)
if len(_load_status.missing_keys) > 0 or len(_load_status.unexpected_keys) > 0:
logging.warning(
f"Loading exact afeat_extractor ckpt from {self.ckpt_path} failed. \n"
f"Missing keys ({len(_load_status.missing_keys)}): "
f"{_load_status.missing_keys}, \n"
f"Unexpected keys ({len(_load_status.unexpected_keys)}): "
f"{_load_status.unexpected_keys} \n"
f"temp_attn_agg are expected to be missing if ckpt was pt contrastively."
)
else:
logging.info(f"Loading afeat_extractor ckpt from {self.ckpt_path} succeeded.")
# print the number of parameters
logging.info(f"AST: {sum(p.numel() for p in self.parameters() if p.requires_grad):,}")
def forward(
self, x: torch.Tensor, for_loop: bool = False, cont_mask: torch.Tensor = None, **ast_kwargs
) -> torch.Tensor:
"""
x: (B, S, T, F) where S is number of segments, F is number of (mel) frequency bins,
ast_kwargs: additional arguments for the AST model
cont_mask: (B, S, T, F) where 0s are the values to be masked out
if `for_loop=True`, we use a for loop to extract features for each segment separately.
if `for_loop=False`, we extract features for all segments at once.
Using the for loop is slower but more memory efficient, while using all segments at once
is faster but more memory inefficient.
Using for loop allows to control the memory footprint by varying the number of videos in a
batch (batch size) rather than the number of segments in a video.
"""
B, S, T, F = x.shape
if for_loop:
assert cont_mask is None, "cont_mask is not supported with for_loop=True"
orig_shape_s = (B, 1, T, F)
# NOTE: since x is (B, S, T, F), and forward_segments expects (BS, T, F).
# (B, S, T, F)[:, s] is (B, T, F) or (BS, T, F) if S=1.
x = torch.cat(
[self.forward_segments(x[:, s], orig_shape_s, **ast_kwargs).unsqueeze(1) for s in range(S)], dim=1
)
else:
orig_shape = (B, S, T, F)
x = x.view(B * S, T, F)
if cont_mask is not None:
cont_mask = cont_mask.reshape(B * S, T, F)
# AST expects a tensor of shape (B*S, T, F).
x = self.forward_segments(x, orig_shape=orig_shape, cont_mask=cont_mask, **ast_kwargs)
# unpack the segments (using rest dimensions to support different shapes e.g. (BS, D) or (BS, t, D))
x = x.view(B, S, *x.shape[1:])
# x now is of shape (B, S, D) or (B, S, t, D) if `self.temp_attn_agg` is `Identity`
global_x = None
if self.extract_features and self.add_global_repr: # lazy execution, throws AttributeError
assert len(x.shape) == 3, f"Local representation should be (B, S, D) {x.shape}"
global_x = self.global_attn_agg(x) # (B, D)
return x, global_x # x is (B, S, ...), global_x is (B, D) or None
def forward_segments(self, x, orig_shape: tuple, cont_mask: torch.Tensor = None, **ast_kwargs):
"""x is (BS, T, F), where S is the number of segments; cont_mask is (BS, T, F): 0s to be masked out"""
# 'pooler_output': (B, D); or 'last_hidden_state: (B, T, D) where T is [CLS, DISTILL, <tokens>]
# x_mask is (B, T) where 0s are the values to be masked out
x, x_mask = self.ast(x, cont_mask=cont_mask, **ast_kwargs)
if self.extract_features:
x = self.get_features_by_type(x)
if self.factorize_freq_time:
x = self.restore_freq_temp_dims(x, orig_shape) # (BS, D, f, t) <- (B*S, T, D)
if cont_mask is not None:
# duplicating the mask for the latent dimension (D) to be compatible with the next func
x_mask = x_mask.unsqueeze(-1).expand(-1, -1, self.config.hidden_size)
x_mask = self.restore_freq_temp_dims(x_mask, orig_shape) # (BS, D, f, t) <- (B*S, T, D)
# again removing the latent
x_mask = x_mask[:, 0, :, :]
else:
x_mask = None
x = self.freq_attn_agg(x, x_mask) # (BS, t, D)
x = self.temp_attn_agg(x) # (BS, D) or (BS, t, D) if self.temp_attn_agg is Identity
else:
x = x["pooler_output"]
x = self.classifier(x)
return x
def get_features_by_type(self, x: BaseModelOutputWithPooling) -> torch.Tensor:
if self.feat_type == "pooler_output":
return x["pooler_output"] # (B, D)
elif self.feat_type == "CLS":
return x["last_hidden_state"][:, 0, :] # (B, D)
elif self.feat_type == "last_hidden_state":
return x["last_hidden_state"] # (B, 2+T, D)
elif self.feat_type == "last_hidden_state_no_AUX":
return x["last_hidden_state"][:, 2:, :] # (B, T, D) removing CLS and distill tokens
else:
raise ValueError(f"Unknown feature type: {self.feat_type}")
def restore_freq_temp_dims(self, feats, orig_shape: tuple):
"""
feats are of shape (B*S, T, D)
where T = 2 + f * t (if feat_type == 'last_hidden_state')
where T = f * t (if feat_type == 'last_hidden_state_no_AUX')
Our goal is to make them of shape (B*S, f, t, D) where f and t are dimensions after patching.
From `self.ast.embeddings.patch_embeddings`, it follows that we could reshape feats:
`feats.transpose(1, 2).view(B*S, D, f, t)`
(Similar function is defined in for RGB features in `motionformer.py`)
"""
B, S, T, F = orig_shape
D = self.config.hidden_size
# num patches in each dimension
f, t = self.ast.embeddings.get_shape(self.config)
if self.feat_type == "last_hidden_state":
feats = feats[:, 2:, :] # removing CLS and distill tokens
feats = feats.permute(0, 2, 1) # (B*S, D, T)
feats = feats.view(B * S, D, f, t) # (B*S, D, f, t)
return feats
def patch_position_emb(self):
if self.max_spec_t is not None:
self.config.max_length = self.max_spec_t
f, t = self.ast.embeddings.get_shape(self.config)
shortened = self.ast.embeddings.position_embeddings[:, : f * t + 2].clone() # +2 for CLS and distill tokens
self.ast.embeddings.position_embeddings = torch.nn.Parameter(shortened).to(self.device)
def to(self, device):
"""AST.device fails with AttributeError. This is a workaround."""
self.device = torch.device(device)
return super().to(device)
class FrequencyTransformerEncoderLayer(BaseEncoderLayer):
"""This layer is used to aggregate the features along the frequency axis.
It follows the same logic as spatio-temporal aggregation in visual feature extractor.
Thus, it is recommended to check the definition of `BaseEncoderLayer` in `motionformer.py`"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, x: torch.Tensor, x_mask: torch.Tensor = None) -> torch.Tensor:
"""x: (B*S, D, f, t); if specified x_mask (B*S, f, t), 0s are the values to be masked out"""
BS, D, f, t = x.shape
# time as a batch dimension
x = x.permute(0, 3, 2, 1) # (B*S, t, f, D)
x = x.reshape(BS * t, f, D) # .view() fails with non-contiguous memory
# similar to mask
if x_mask is not None:
x_mask = x_mask.permute(0, 2, 1) # (B*S, t, f)
x_mask = x_mask.reshape(BS * t, f)
# apply encoder layer (BaseEncoderLayer.forward) - it will add CLS token and output its representation
x = super().forward(x=x, x_mask=x_mask) # (B*S*t, D)
# reshape back to (B*S, t, D)
x = x.view(BS, t, D)
return x # (B*S, t, D)