# Modified from timm library: # https://github.com/huggingface/pytorch-image-models/blob/648aaa41233ba83eb38faf5ba9d415d574823241/timm/layers/mlp.py#L13 from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from .modulate_layers import modulate from ...utils.helper import to_2tuple class MLP(nn.Module): """MLP as used in Vision Transformer, MLP-Mixer and related networks""" def __init__( self, in_channels, hidden_channels=None, out_features=None, act_layer=nn.GELU, norm_layer=None, bias=True, drop=0.0, use_conv=False, device=None, dtype=None, ): factory_kwargs = {"device": device, "dtype": dtype} super().__init__() out_features = out_features or in_channels hidden_channels = hidden_channels or in_channels bias = to_2tuple(bias) drop_probs = to_2tuple(drop) linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear self.fc1 = linear_layer(in_channels, hidden_channels, bias=bias[0], **factory_kwargs) self.act = act_layer() self.drop1 = nn.Dropout(drop_probs[0]) self.norm = norm_layer(hidden_channels, **factory_kwargs) if norm_layer is not None else nn.Identity() self.fc2 = linear_layer(hidden_channels, out_features, bias=bias[1], **factory_kwargs) self.drop2 = nn.Dropout(drop_probs[1]) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop1(x) x = self.norm(x) x = self.fc2(x) x = self.drop2(x) return x # copied from https://github.com/black-forest-labs/flux/blob/main/src/flux/modules/layers.py # only used when use_vanilla is True class MLPEmbedder(nn.Module): def __init__(self, in_dim: int, hidden_dim: int, device=None, dtype=None): factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True, **factory_kwargs) self.silu = nn.SiLU() self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True, **factory_kwargs) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.out_layer(self.silu(self.in_layer(x))) class LinearWarpforSingle(nn.Module): def __init__(self, in_dim: int, out_dim: int, bias=True, device=None, dtype=None): factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.fc = nn.Linear(in_dim, out_dim, bias=bias, **factory_kwargs) def forward(self, x, y): z = torch.cat([x, y], dim=2) return self.fc(z) class FinalLayer1D(nn.Module): def __init__(self, hidden_size, patch_size, out_channels, act_layer, device=None, dtype=None): factory_kwargs = {"device": device, "dtype": dtype} super().__init__() # Just use LayerNorm for the final layer self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs) self.linear = nn.Linear(hidden_size, patch_size * out_channels, bias=True, **factory_kwargs) nn.init.zeros_(self.linear.weight) nn.init.zeros_(self.linear.bias) # Here we don't distinguish between the modulate types. Just use the simple one. self.adaLN_modulation = nn.Sequential( act_layer(), nn.Linear(hidden_size, 2 * hidden_size, bias=True, **factory_kwargs) ) # Zero-initialize the modulation nn.init.zeros_(self.adaLN_modulation[1].weight) nn.init.zeros_(self.adaLN_modulation[1].bias) def forward(self, x, c): shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1) x = modulate(self.norm_final(x), shift=shift, scale=scale) x = self.linear(x) return x class ChannelLastConv1d(nn.Conv1d): def forward(self, x: torch.Tensor) -> torch.Tensor: x = x.permute(0, 2, 1) x = super().forward(x) x = x.permute(0, 2, 1) return x class ConvMLP(nn.Module): def __init__( self, dim: int, hidden_dim: int, multiple_of: int = 256, kernel_size: int = 3, padding: int = 1, device=None, dtype=None, ): """ Convolutional MLP module. Args: dim (int): Input dimension. hidden_dim (int): Hidden dimension of the feedforward layer. multiple_of (int): Value to ensure hidden dimension is a multiple of this value. Attributes: w1: Linear transformation for the first layer. w2: Linear transformation for the second layer. w3: Linear transformation for the third layer. """ factory_kwargs = {"device": device, "dtype": dtype} super().__init__() hidden_dim = int(2 * hidden_dim / 3) hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) self.w1 = ChannelLastConv1d(dim, hidden_dim, bias=False, kernel_size=kernel_size, padding=padding, **factory_kwargs) self.w2 = ChannelLastConv1d(hidden_dim, dim, bias=False, kernel_size=kernel_size, padding=padding, **factory_kwargs) self.w3 = ChannelLastConv1d(dim, hidden_dim, bias=False, kernel_size=kernel_size, padding=padding, **factory_kwargs) def forward(self, x): return self.w2(F.silu(self.w1(x)) * self.w3(x))