import logging import math import random from typing import Tuple import torch import torchvision import torchaudio import numpy as np import einops def sec2frames(sec, fps): return int(sec * fps) def frames2sec(frames, fps): return frames / fps class EqualifyFromRight(torch.nn.Module): def __init__(self, clip_max_len_sec=10): """ Takes the dataset item and makes sure more streams are of an equal size in terms of fps. It, however, assumes that the signal is synched and trims the ending parts ('from the right'). """ super().__init__() self.clip_max_len_sec = clip_max_len_sec def forward(self, item): """ `item`: {'video': (Tv, C, H, W), 'audio': (Ta,), 'meta': { 'audio': {'framerate': [float], 'duration': [float]} 'video': {'fps': [float], 'duration': [float]}} """ a_fps = item["meta"]["audio"]["framerate"][0] v_fps = item["meta"]["video"]["fps"][0] Ta = item["audio"].shape[0] Tv, C, H, W = item["video"].shape a_len_secs = Ta / a_fps v_len_secs = Tv / v_fps min_len = min(self.clip_max_len_sec, a_len_secs, v_len_secs) a_frames_per_v_frame = a_fps // v_fps v_len_frames = int(v_fps * min_len) a_len_frames = int(a_frames_per_v_frame * v_len_frames) # print(a_len_frames, v_len_frames) assert a_len_frames <= Ta and v_len_frames <= Tv item["audio"] = item["audio"][:a_len_frames] item["video"] = item["video"][:v_len_frames, :, :, :] return item class RGBSpatialCrop(torch.nn.Module): def __init__(self, input_size, is_random): super().__init__() assert input_size is not None, f"smaller_input_size is `{input_size}`" if isinstance(input_size, int): input_size = (input_size, input_size) self.input_size = input_size self.is_random = is_random @staticmethod def get_random_crop_sides(vid, output_size): """Slice parameters for random crop""" h, w = vid.shape[-2:] th, tw = output_size if w == tw and h == th: return 0, 0, h, w i = random.randint(0, h - th) j = random.randint(0, w - tw) return i, j, th, tw @staticmethod def get_center_crop_sides(vid, output_size): """Slice parameters for center crop""" h, w = vid.shape[-2:] th, tw = output_size i = int(round((h - th) / 2.0)) j = int(round((w - tw) / 2.0)) return i, j, th, tw def forward(self, item): # (Tv, C, H, W) vid = item["video"] if self.is_random: i, j, h, w = self.get_random_crop_sides(vid, self.input_size) else: i, j, h, w = self.get_center_crop_sides(vid, self.input_size) item["video"] = vid[..., i : (i + h), j : (j + w)] return item class Resize(torchvision.transforms.Resize): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, item): item["video"] = super().forward(item["video"]) return item class RGBSpatialCropSometimesUpscale(torch.nn.Module): """This (randomly) crops the input video and with prob `sometimes_p` this crop is smaller but upscaled to `target_input_size`""" def __init__(self, sometimes_p, target_input_size, is_random, smaller_input_size=None): super().__init__() self.sometimes_p = sometimes_p self.do_sometimes_upscale = sometimes_p is not None and sometimes_p > 0 self.crop_only = RGBSpatialCrop(target_input_size, is_random) if self.do_sometimes_upscale: self.crop_further_and_upscale = torchvision.transforms.Compose( [ RGBSpatialCrop(smaller_input_size, is_random), Resize(target_input_size, antialias=None), ] ) def forward(self, item): assert len(item["video"].shape) == 4, ( f"{item['video'].shape}: if it is applied after GenerateMultipleClips," "augs should be applied to each clip separately, not to the whole video array. " "Otherwise, ignore this warning (comment it)." ) if self.do_sometimes_upscale and self.sometimes_p > torch.rand(1): return self.crop_further_and_upscale(item) else: return self.crop_only(item) class RandomApplyColorDistortion(torch.nn.Module): def __init__(self, p_gray_scale=0.0, p_color_jitter=0.0, s=1.0) -> None: super().__init__() self.p_gray_scale = p_gray_scale self.p_color_jitter = p_color_jitter self.s = s assert 0 <= self.p_color_jitter <= 1 and 0 <= self.p_gray_scale <= 1, (p_color_jitter, p_gray_scale) # SimCLR params color_jitter = torchvision.transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s) rand_color_jitter = torchvision.transforms.RandomApply([color_jitter], p_color_jitter) rand_gray = torchvision.transforms.RandomGrayscale(p_gray_scale) self.transforms = torchvision.transforms.Compose([rand_color_jitter, rand_gray]) def apply_to_single_clip(self, clip): return self.transforms(clip) def apply_to_each_clip(self, clips): for i, clip in enumerate(clips): clips[i] = self.apply_to_single_clip(clip) return clips def forward(self, item): has_batch_dim = len(item["video"].shape) == 5 if has_batch_dim: fn = self.apply_to_each_clip else: fn = self.apply_to_single_clip item["video"] = fn(item["video"]) return item class ApplyColorJitterFrameWise(torch.nn.Module): def __init__(self, s=1.0) -> None: super().__init__() self.s = s # SimCLR params self.transform = torchvision.transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s) def apply_to_single_clip(self, clip): for i, frame in enumerate(clip): clip[i] = self.transform(frame) return clip def apply_to_each_clip(self, clips): for i, clip in enumerate(clips): clips[i] = self.apply_to_single_clip(clip) return clips def forward(self, item): has_batch_dim = len(item["video"].shape) == 5 if has_batch_dim: fn = self.apply_to_each_clip else: fn = self.apply_to_single_clip item["video"] = fn(item["video"]) return item class RandomHorizontalFlip(torchvision.transforms.RandomHorizontalFlip): def __init__(self, p=0.5): super().__init__(p) def apply_to_single_clip(self, clip): return super().forward(clip) def apply_to_each_clip(self, clips): for i, clip in enumerate(clips): clips[i] = self.apply_to_single_clip(clip) return clips def forward(self, item): has_batch_dim = len(item["video"].shape) == 5 if has_batch_dim: fn = self.apply_to_each_clip else: fn = self.apply_to_single_clip item["video"] = fn(item["video"]) return item def make_class_grid( leftmost_val, rightmost_val, grid_size, add_extreme_offset: bool = False, seg_size_vframes: int = None, nseg: int = None, step_size_seg: float = None, vfps: float = None, ): assert grid_size >= 3, f"grid_size: {grid_size} doesnot make sense. If =2 -> (-1,1); =1 -> (-1); =0 -> ()" grid = torch.from_numpy(np.linspace(leftmost_val, rightmost_val, grid_size)).float() if add_extreme_offset: assert all([seg_size_vframes, nseg, step_size_seg]), f"{seg_size_vframes} {nseg} {step_size_seg}" seg_size_sec = seg_size_vframes / vfps trim_size_in_seg = nseg - (1 - step_size_seg) * (nseg - 1) extreme_value = trim_size_in_seg * seg_size_sec grid = torch.cat([grid, torch.tensor([extreme_value])]) # adding extreme offset to the class grid return grid def quantize_offset(grid: torch.Tensor, off_sec: float) -> Tuple[float, int]: """Takes in the offset in seconds and snaps it onto the closest grid element. Returns the grid value and its index.""" closest_grid_el = (grid - off_sec).abs().argmin() return grid[closest_grid_el], closest_grid_el def apply_a_jitter(a_start_i, a_len_frames, a_crop_len_frames, a_fps, max_a_jitter_sec): max_a_start_i = a_len_frames - a_crop_len_frames max_a_jitter_i = sec2frames(max_a_jitter_sec, a_fps) max_a_jitter_i_left = min(a_start_i, max_a_jitter_i) max_a_jitter_i_right = min(max_a_start_i - a_start_i, max_a_jitter_i) # jitter is U[left, right] a_jitter_i = random.randint(-max_a_jitter_i_left, max_a_jitter_i_right) # apply jitter a_start_i = a_start_i + a_jitter_i # making sure that any value from `a_start_i + U[left, right]` will be inside of [0, len-crop] region assert 0 <= a_start_i <= max_a_start_i, f"{a_jitter_i} {max_a_jitter_i_left} {max_a_jitter_i_right} {max_a_start_i}" return a_start_i, a_jitter_i class TemporalCropAndOffset(torch.nn.Module): def __init__( self, crop_len_sec: float, max_off_sec: float, offset_type="grid", do_offset: bool = True, grid_size: int = None, max_wiggle_sec: float = None, add_doubt_cls: bool = False, segment_size_vframes: int = None, n_segments: int = None, step_size_seg: float = None, vfps: float = None, prob_oos: float = None, ): super().__init__() self.crop_len_sec = crop_len_sec self.do_offset = do_offset self.grid_size = grid_size self.offset_type = offset_type self.max_off_sec = max_off_sec self.max_a_jitter_sec = max_wiggle_sec if do_offset: if offset_type == "grid": self.class_grid = make_class_grid( -max_off_sec, max_off_sec, grid_size, add_doubt_cls, segment_size_vframes, n_segments, step_size_seg, vfps, ) logging.info(f"Offsets class grid: {self.class_grid}") if self.max_a_jitter_sec is not None: assert (max_wiggle_sec - 1e-6) <= ( (self.class_grid[1] - self.class_grid[0]) / 2 ), f"{self.class_grid}" elif offset_type == "uniform": self.off_dist = torch.distributions.uniform.Uniform(-max_off_sec, max_off_sec) logging.info(f"Offset uniform distribution: {self.off_dist}") elif offset_type == "uniform_binary": self.itu_t_range = (-0.125, 0.045) self.prob_oos = prob_oos self.ins_dist = torch.distributions.uniform.Uniform(self.itu_t_range[0], self.itu_t_range[1]) self.off_dist = torch.distributions.uniform.Uniform(-max_off_sec, max_off_sec) else: raise NotImplementedError(f"Unknown offset type: {offset_type}") def forward(self, item): vid = item["video"] aud = item["audio"] v_len_frames, C, H, W = vid.shape a_len_frames = aud.shape[0] v_fps = int(item["meta"]["video"]["fps"][0]) a_fps = int(item["meta"]["audio"]["framerate"][0]) v_crop_len_frames = sec2frames(self.crop_len_sec, v_fps) a_crop_len_frames = sec2frames(self.crop_len_sec, a_fps) if self.do_offset: # trying to get the offset parameters (for instance during valid and test we have fixed offsets) offset_sec = item["targets"].get("offset_sec", None) v_start_i_sec = item["targets"].get("v_start_i_sec", None) if "offset_target" in item["targets"]: is_oos = item["targets"]["offset_target"].get("oos", None) # train-time if offset_sec is None and v_start_i_sec is None: # aud starts `offset_sec` earlier than it should; aud has what will be shown after offset_sec if self.offset_type == "grid": offset_sec = random.choice(self.class_grid.tolist()) elif self.offset_type == "uniform": offset_sec = self.off_dist.sample().item() elif self.offset_type == "uniform_binary": # in-sync: Uniform(-0.125, 0.045) # out-of-sync: Uniform(-5.5, 5.5) and resampled until not in Uniform(-0.125, 0.045) # first, we sample if the offset is out-of-sync with prob_oss is_oos = (torch.rand(1) < self.prob_oos).item() if is_oos: # second, we sample the offset itself (if in in-sync range, trying again) offset_sec = self.off_dist.sample().item() while self.itu_t_range[0] <= offset_sec <= self.itu_t_range[1]: offset_sec = self.off_dist.sample().item() else: offset_sec = self.ins_dist.sample().item() offset_sec = round(offset_sec, 2) v_start_max_sec = frames2sec(v_len_frames - v_crop_len_frames, v_fps) assert v_start_max_sec > 0, f'{v_len_frames} {v_crop_len_frames} {v_fps} @ {item["path"]}' # `v_start_sec` IS NOT rounded to the fps grid v_start_sec = random.uniform(max(0, -offset_sec), min(v_start_max_sec, v_start_max_sec - offset_sec)) assert 0 <= v_start_sec <= v_start_max_sec, f'{v_start_sec} {v_start_max_sec} {item["path"]}' v_start_i = sec2frames(v_start_sec, v_fps) # `v_start_i_sec` IS rounded to the fps grid v_start_i_sec = frames2sec(v_start_i, v_fps) else: offset_sec = round(offset_sec, 2) v_start_i = sec2frames(v_start_i_sec, v_fps) v_end_i = v_start_i + v_crop_len_frames # `a_start_i` depends on the rounded value `v_start_i_sec`, otherwise # (v_start_sec) we have ±0.1 jittering a_start_i = sec2frames(v_start_i_sec + offset_sec, a_fps) else: offset_sec = 0.0 is_random_crop = item["split"] == "train" v_start_i, v_end_i = self.get_crop_idx(v_len_frames, v_crop_len_frames, is_random=is_random_crop) v_start_i_sec = frames2sec(v_start_i, v_fps) a_start_i = sec2frames(v_start_i_sec, a_fps) # sometimes due to the rounding error e.g. v_start_sec = 1.505 but sec2frames(1.505, 25) = 1.48 # given offset is -1.5, the a_start_i will be a small negative value. (likely a_fps * 1/v_fps * 0.5) if a_start_i < 0: how_much_out = a_start_i logging.info(f'a_start_i is negative ({how_much_out}) at {item["path"]}') if abs(how_much_out) <= a_fps / v_fps: logging.info("fixing it") a_start_i += abs(how_much_out) else: raise Exception(f'{how_much_out} {item["path"]}') if self.max_a_jitter_sec is not None and self.max_a_jitter_sec > 0: a_start_i, a_jitter_i = apply_a_jitter( a_start_i, a_len_frames, a_crop_len_frames, a_fps, self.max_a_jitter_sec ) item["meta"]["a_jitter_i"] = a_jitter_i a_end_i = a_start_i + a_crop_len_frames assert v_start_i < v_end_i and a_start_i < a_end_i assert aud.shape[0] >= a_end_i, f'{aud.shape} {a_end_i} {item["path"]}' assert vid.shape[0] >= v_end_i, f'{vid.shape} {v_end_i} {item["path"]}' vid, aud = vid[v_start_i:v_end_i, :, :, :], aud[a_start_i:a_end_i] item["video"] = vid item["audio"] = aud assert item["video"].shape[0] == v_fps * self.crop_len_sec, f'{item["video"].shape} {item["path"]}' assert item["audio"].shape[0] == a_fps * self.crop_len_sec, f'{item["audio"].shape} {item["path"]}' # caching parameters if self.do_offset: if self.offset_type == "grid": offset_label, offset_target = quantize_offset(self.class_grid, offset_sec) elif self.offset_type == "uniform": offset_label, offset_target = offset_sec, offset_sec elif self.offset_type == "uniform_binary": offset_label, offset_target = offset_sec, {"oos": is_oos, "offset": offset_sec} item["targets"]["offset_sec"] = offset_sec item["targets"]["v_start_i_sec"] = v_start_i_sec item["targets"]["offset_label"] = offset_label # assert 'offset_target' not in item['targets'], f'{item["targets"]}. What passed it there?' item["targets"]["offset_target"] = offset_target return item def get_crop_idx(self, len_frames: int, crop_len_frames: int, is_random=True): if len_frames == crop_len_frames: return 0, len_frames if is_random: left_i = random.randint(0, len_frames - crop_len_frames) else: left_i = int(round((len_frames - crop_len_frames) / 2.0)) return left_i, left_i + crop_len_frames class GenerateMultipleSegments(torch.nn.Module): """ Given an item with video and audio, generates a batch of `n_segments` segments of length `segment_size_vframes` (if None, the max number of segments will be made). If `is_start_random` is True, the starting position of the 1st segment will be random but respecting n_segments. `audio_jitter_sec` is the amount of audio offset in seconds. """ def __init__( self, segment_size_vframes: int, n_segments: int = None, is_start_random: bool = False, audio_jitter_sec: float = 0.0, step_size_seg: float = 1, ): super().__init__() self.segment_size_vframes = segment_size_vframes self.n_segments = n_segments self.is_start_random = is_start_random self.audio_jitter_sec = audio_jitter_sec self.step_size_seg = step_size_seg logging.info(f"Segment step size: {self.step_size_seg}") def forward(self, item): v_len_frames, C, H, W = item["video"].shape a_len_frames = item["audio"].shape[0] v_fps = int(item["meta"]["video"]["fps"][0]) a_fps = int(item["meta"]["audio"]["framerate"][0]) ## Determining the number of segments # segment size segment_size_vframes = self.segment_size_vframes segment_size_aframes = sec2frames(frames2sec(self.segment_size_vframes, v_fps), a_fps) # step size (stride) stride_vframes = int(self.step_size_seg * segment_size_vframes) stride_aframes = int(self.step_size_seg * segment_size_aframes) # calculating the number of segments. (W - F + 2P) / S + 1 n_segments_max_v = math.floor((v_len_frames - segment_size_vframes) / stride_vframes) + 1 n_segments_max_a = math.floor((a_len_frames - segment_size_aframes) / stride_aframes) + 1 # making sure audio and video can accommodate the same number of segments n_segments_max = min(n_segments_max_v, n_segments_max_a) n_segments = n_segments_max if self.n_segments is None else self.n_segments assert n_segments <= n_segments_max, ( f"cant make {n_segments} segs of len {self.segment_size_vframes} in a vid " f'of len {v_len_frames} for {item["path"]}' ) # (n_segments, 2) each v_ranges, a_ranges = self.get_sequential_seg_ranges( v_len_frames, a_len_frames, v_fps, a_fps, n_segments, segment_size_aframes ) # segmenting original streams (n_segments, segment_size_frames, C, H, W) item["video"] = torch.stack([item["video"][s:e] for s, e in v_ranges], dim=0) item["audio"] = torch.stack([item["audio"][s:e] for s, e in a_ranges], dim=0) return item def get_sequential_seg_ranges(self, v_len_frames, a_len_frames, v_fps, a_fps, n_seg, seg_size_aframes): # if is_start_random is True, the starting position of the 1st segment will # be random but respecting n_segments like so: "-CCCCCCCC---" (maybe with fixed overlap), # else the segments are taken from the middle of the video respecting n_segments: "--CCCCCCCC--" seg_size_vframes = self.segment_size_vframes # for brevity # calculating the step size in frames step_size_vframes = int(self.step_size_seg * seg_size_vframes) step_size_aframes = int(self.step_size_seg * seg_size_aframes) # calculating the length of the sequence of segments (and in frames) seg_seq_len = n_seg * self.step_size_seg + (1 - self.step_size_seg) vframes_seg_seq_len = int(seg_seq_len * seg_size_vframes) aframes_seg_seq_len = int(seg_seq_len * seg_size_aframes) # doing temporal crop max_v_start_i = v_len_frames - vframes_seg_seq_len if self.is_start_random: v_start_i = random.randint(0, max_v_start_i) else: v_start_i = max_v_start_i // 2 a_start_i = sec2frames(frames2sec(v_start_i, v_fps), a_fps) # vid frames -> seconds -> aud frames # make segments starts v_start_seg_i = torch.tensor([v_start_i + i * step_size_vframes for i in range(n_seg)]).int() a_start_seg_i = torch.tensor([a_start_i + i * step_size_aframes for i in range(n_seg)]).int() # apply jitter to audio if self.audio_jitter_sec > 0: jitter_aframes = sec2frames(self.audio_jitter_sec, a_fps) # making sure after applying jitter, the audio is still within the audio boundaries jitter_aframes = min(jitter_aframes, a_start_i, a_len_frames - a_start_i - aframes_seg_seq_len) a_start_seg_i += random.randint(-jitter_aframes, jitter_aframes) # applying jitter to segments # make segment ends v_ends_seg_i = v_start_seg_i + seg_size_vframes a_ends_seg_i = a_start_seg_i + seg_size_aframes # using the adjusted a_start_seg_i (with jitter) # make ranges v_ranges = torch.stack([v_start_seg_i, v_ends_seg_i], dim=1) a_ranges = torch.stack([a_start_seg_i, a_ends_seg_i], dim=1) assert (a_ranges >= 0).all() and (a_ranges <= a_len_frames).all(), f"{a_ranges} out of {a_len_frames}" assert (v_ranges <= v_len_frames).all(), f"{v_ranges} out of {v_len_frames}" return v_ranges, a_ranges class TemporalCropAndOffsetForSyncabilityTraining(torch.nn.Module): def __init__( self, max_off_sec: float, do_offset: bool = True, grid_size: int = None, max_wiggle_sec: float = None, segment_size_vframes: int = None, n_segments: int = None, step_size_seg: float = None, vfps: float = None, ): super().__init__() seg_size_sec = segment_size_vframes / vfps trim_size_in_seg = n_segments - (1 - step_size_seg) * (n_segments - 1) self.crop_len_sec = round(trim_size_in_seg * seg_size_sec, 2) logging.info(f"Crop len: {self.crop_len_sec}") self.do_offset = do_offset self.grid_size = grid_size self.max_off_sec = max_off_sec self.max_a_jitter_sec = max_wiggle_sec self.segment_size_vframes = segment_size_vframes self.n_segments = n_segments self.step_size_seg = step_size_seg self.prob_syncable = 0.5 if do_offset: self.class_grid = make_class_grid(-max_off_sec, max_off_sec, grid_size) logging.info(f"Offset class grid: {self.class_grid}") if self.max_a_jitter_sec is not None: assert (max_wiggle_sec - 1e-6) <= ((self.class_grid[1] - self.class_grid[0]) / 2), f"{self.class_grid}" def forward(self, item): vid = item["video"] aud = item["audio"] v_len_frames, C, H, W = vid.shape a_len_frames = aud.shape[0] v_fps = int(item["meta"]["video"]["fps"][0]) a_fps = int(item["meta"]["audio"]["framerate"][0]) v_crop_len_frames = sec2frames(self.crop_len_sec, v_fps) a_crop_len_frames = sec2frames(self.crop_len_sec, a_fps) if self.do_offset: # trying to get the offset parameters (for instance during valid and test we have fixed offsets) offset_sec = item["targets"].get("offset_sec", None) v_start_i_sec = item["targets"].get("v_start_i_sec", None) # train-time if offset_sec is None and v_start_i_sec is None: # for the syncability training, we want to have a syncable or non-syncable offset with 50% prob offset_is_syncable = random.random() < self.prob_syncable # 1=syncable, 0=non-syncable if offset_is_syncable: offset_sec = random.choice(self.class_grid.tolist()) else: offset_sec = random.choice([-self.crop_len_sec, self.crop_len_sec]) # either - or + offset # aud starts `offset_sec` earlier than it should; aud has what will be shown after offset_sec offset_sec = round(offset_sec, 2) v_start_max_sec = frames2sec(v_len_frames - v_crop_len_frames, v_fps) assert v_start_max_sec > 0, f'{v_len_frames} {v_crop_len_frames} {v_fps} @ {item["path"]}' # `v_start_sec` IS NOT rounded to the fps grid v_start_sec = random.uniform(max(0, -offset_sec), min(v_start_max_sec, v_start_max_sec - offset_sec)) assert 0 <= v_start_sec <= v_start_max_sec, f'{v_start_sec} {v_start_max_sec} {item["path"]}' v_start_i = sec2frames(v_start_sec, v_fps) v_end_i = v_start_i + v_crop_len_frames # `v_start_i_sec` IS rounded to the fps grid v_start_i_sec = frames2sec(v_start_i, v_fps) # `a_start_i` depends on the rounded value `v_start_i_sec`, otherwise # (v_start_sec) we have ±0.1 jittering a_start_i = sec2frames(v_start_i_sec + offset_sec, a_fps) if self.max_a_jitter_sec is not None and self.max_a_jitter_sec > 0: a_start_i, a_jitter_i = apply_a_jitter( a_start_i, a_len_frames, a_crop_len_frames, a_fps, self.max_a_jitter_sec ) item["meta"]["a_jitter_i"] = a_jitter_i a_end_i = a_start_i + a_crop_len_frames else: offset_sec = round(offset_sec, 2) v_start_i = sec2frames(v_start_i_sec, v_fps) a_start_i = sec2frames(v_start_i_sec + offset_sec, a_fps) v_end_i = v_start_i + v_crop_len_frames a_end_i = a_start_i + a_crop_len_frames else: offset_sec = 0.0 is_random_crop = item["split"] == "train" v_start_i, v_end_i = self.get_crop_idx(v_len_frames, v_crop_len_frames, is_random=is_random_crop) v_start_i_sec = frames2sec(v_start_i, v_fps) a_start_i = sec2frames(v_start_i_sec, a_fps) if self.max_a_jitter_sec is not None and self.max_a_jitter_sec > 0: a_start_i, a_jitter_i = apply_a_jitter( a_start_i, a_len_frames, a_crop_len_frames, a_fps, self.max_a_jitter_sec ) item["meta"]["a_jitter_i"] = a_jitter_i a_end_i = a_start_i + a_crop_len_frames # sometimes due to the rounding error e.g. v_start_sec = 1.505 but sec2frames(1.505, 25) = 1.48 # given offset is -1.5, the a_start_i will be a small negative value. (likely a_fps * 1/v_fps * 0.5) if a_start_i < 0: how_much_out = a_start_i logging.info(f'a_start_i is negative ({how_much_out}) at {item["path"]}') if abs(how_much_out) <= a_fps / v_fps: logging.info("fixing it") a_start_i += abs(how_much_out) a_end_i += abs(how_much_out) else: raise Exception(f'{how_much_out} {item["path"]}') assert v_start_i < v_end_i and a_start_i < a_end_i assert aud.shape[0] >= a_end_i, f'{aud.shape} {a_end_i} {item["path"]}' assert vid.shape[0] >= v_end_i, f'{vid.shape} {v_end_i} {item["path"]}' vid, aud = vid[v_start_i:v_end_i, :, :, :], aud[a_start_i:a_end_i] item["video"] = vid item["audio"] = aud assert item["video"].shape[0] == int(v_fps * self.crop_len_sec), f'{item["video"].shape} {item["path"]}' assert item["audio"].shape[0] == int(a_fps * self.crop_len_sec), f'{item["audio"].shape} {item["path"]}' # caching parameters if self.do_offset: # NOTE: this is useless for the extreme offsetting offset_label, offset_target = quantize_offset(self.class_grid, offset_sec) item["targets"]["offset_sec"] = offset_sec item["targets"]["offset_label"] = offset_label # assert 'offset_target' not in item['targets'], f'{item["targets"]}. What passed it there?' item["targets"]["offset_target"] = offset_target item["targets"]["v_start_i_sec"] = v_start_i_sec item["targets"]["sync_target"] = int(offset_is_syncable) return item def get_crop_idx(self, len_frames: int, crop_len_frames: int, is_random=True): if len_frames == crop_len_frames: return 0, len_frames if is_random: left_i = random.randint(0, len_frames - crop_len_frames) else: left_i = int(round((len_frames - crop_len_frames) / 2.0)) return left_i, left_i + crop_len_frames class RGBToFloatToZeroOne(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, item): item["video"] = item["video"].to(torch.float32).div(255.0) return item class RGBToHalfToZeroOne(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, item): item["video"] = item["video"].half().div(255.0) return item class RGBNormalize(torchvision.transforms.Normalize): """The same as the torchvision`s but with different interface for the dict. This should work for any shape (..., C, H, W)""" def __init__(self, mean, std, inplace=False): super().__init__(mean, std, inplace) logging.info(f"RGBNormalize: mean={mean}, std={std}") def forward(self, item): item["video"] = super().forward(item["video"]) item["meta"]["video"]["norm_stats"] = {"mean": torch.as_tensor(self.mean), "std": torch.as_tensor(self.std)} return item class AudioRandomVolume(torch.nn.Module): def __init__(self, p: float, **kwargs): super().__init__() transform = torchaudio.transforms.Vol(**kwargs) self.transform = torchvision.transforms.RandomApply([transform], p) def apply_to_single_clip(self, clip): return self.transform(clip) def apply_to_each_clip(self, clips): for i, clip in enumerate(clips): clips[i] = self.apply_to_single_clip(clip) return clips def forward(self, item): has_batch_dim = len(item["audio"].shape) == 2 if has_batch_dim: fn = self.apply_to_each_clip else: fn = self.apply_to_single_clip item["audio"] = fn(item["audio"]) return item class AudioRandomLowpassFilter(torch.nn.Module): def __init__(self, p: float, cutoff_freq: float, Q: float = 0.707): super().__init__() self.p = p self.cutoff_freq = cutoff_freq self.Q = Q def apply_to_single_clip(self, clip, sr): if self.p > torch.rand(1): return torchaudio.functional.lowpass_biquad(clip, sr, self.cutoff_freq, self.Q) else: return clip def apply_to_each_clip(self, clips, sr): for i, clip in enumerate(clips): clips[i] = self.apply_to_single_clip(clip, sr) return clips def forward(self, item): has_batch_dim = len(item["audio"].shape) == 2 sr = int(item["meta"]["audio"]["framerate"][0]) if has_batch_dim: fn = self.apply_to_each_clip else: fn = self.apply_to_single_clip item["audio"] = fn(item["audio"], sr) return item class AudioRandomPitchShift(torch.nn.Module): def __init__(self, p: float, shift: int) -> None: super().__init__() self.p = p self.shift = shift def apply_to_single_clip(self, wave, sr): if self.p > torch.rand(1): effects = [["pitch", f"{self.shift}"], ["rate", f"{sr}"]] wave = wave.unsqueeze(0) wave, _ = torchaudio.sox_effects.apply_effects_tensor(wave, sr, effects) wave = wave.squeeze(0) return wave def apply_to_each_clip(self, waves, sr): for i, wave in enumerate(waves): waves[i] = self.apply_to_single_clip(wave, sr) return waves def forward(self, item): has_batch_dim = len(item["audio"].shape) == 2 sr = int(item["meta"]["audio"]["framerate"][0]) if has_batch_dim: fn = self.apply_to_each_clip else: fn = self.apply_to_single_clip item["audio"] = fn(item["audio"], sr) return item class AudioRandomReverb(torch.nn.Module): def __init__(self, p: float) -> None: super().__init__() self.p = p self.effects = [["reverb", "-w"]] def apply_to_single_clip(self, wave, fps): if self.p > torch.rand(1): wave = wave.unsqueeze(0) wave, _ = torchaudio.sox_effects.apply_effects_tensor(wave, fps, self.effects) wave = wave.mean(dim=0) return wave def apply_to_each_clip(self, waves, fps): for i, wave in enumerate(waves): waves[i] = self.apply_to_single_clip(wave, fps) return waves def forward(self, item): has_batch_dim = len(item["audio"].shape) == 2 sr = int(item["meta"]["audio"]["framerate"][0]) if has_batch_dim: fn = self.apply_to_each_clip else: fn = self.apply_to_single_clip item["audio"] = fn(item["audio"], sr) return item class AudioRandomGaussNoise(torch.nn.Module): def __init__(self, p: float, amplitude=0.01) -> None: super().__init__() self.p = p self.amplitude = amplitude def apply_to_single_clip(self, wave): if self.p > torch.rand(1): noise = torch.randn_like(wave, dtype=wave.dtype) wave = wave + self.amplitude * noise return wave def apply_to_each_clip(self, waves): for i, wave in enumerate(waves): waves[i] = self.apply_to_single_clip(wave) return waves def forward(self, item): has_batch_dim = len(item["audio"].shape) == 2 if has_batch_dim: fn = self.apply_to_each_clip else: fn = self.apply_to_single_clip item["audio"] = fn(item["audio"]) return item class AudioMelSpectrogram(torch.nn.Module): def __init__(self, **kwargs): super().__init__() self.spec = torchaudio.transforms.MelSpectrogram(**kwargs) def forward(self, item): item["audio"] = self.spec(item["audio"]) # safe for batched input return item class AudioLog(torch.nn.Module): def __init__(self, eps=1e-6) -> None: super().__init__() self.eps = eps def forward(self, item): item["audio"] = torch.log(item["audio"] + self.eps) return item class PadOrTruncate(torch.nn.Module): def __init__(self, max_spec_t: int, pad_mode: str = "constant", pad_value: float = 0.0): super().__init__() self.max_spec_t = max_spec_t self.pad_mode = pad_mode self.pad_value = pad_value def forward(self, item): item["audio"] = self.pad_or_truncate(item["audio"]) return item def pad_or_truncate(self, audio): difference = self.max_spec_t - audio.shape[-1] # safe for batched input # pad or truncate, depending on difference if difference > 0: # pad the last dim (time) -> (..., n_mels, 0+time+difference) # safe for batched input pad_dims = (0, difference) audio = torch.nn.functional.pad(audio, pad_dims, self.pad_mode, self.pad_value) elif difference < 0: logging.warning(f"Truncating spec ({audio.shape}) to max_spec_t ({self.max_spec_t}).") audio = audio[..., : self.max_spec_t] # safe for batched input return audio class AudioNormalizeAST(torch.nn.Module): """Normalization is done with two specified mean and std (half)""" def __init__(self, mean: float, std: float) -> None: super().__init__() self.mean = mean self.std = std def forward(self, item): item["audio"] = (item["audio"] - self.mean) / (2 * self.std) item["meta"]["audio"]["norm_stats"] = {"mean": self.mean, "std": self.std} return item class PermuteStreams(torch.nn.Module): def __init__(self, einops_order_audio: str, einops_order_rgb: str) -> None: '''For example: einops_order_audio: "S F T -> S T F" einops_order_rgb: "S T C H W -> S C T H W"''' super().__init__() self.einops_order_audio = einops_order_audio self.einops_order_rgb = einops_order_rgb def forward(self, item): if self.einops_order_audio is not None: item["audio"] = einops.rearrange(item["audio"], self.einops_order_audio).contiguous() if self.einops_order_rgb is not None: item["video"] = einops.rearrange(item["video"], self.einops_order_rgb).contiguous() return item class ResampleAudio(torch.nn.Module): def __init__(self, new_fps: int): super().__init__() self.new_fps = new_fps def forward(self, item): orig_fps = int(item["meta"]["audio"]["framerate"][0]) item["meta"]["audio"]["orig_shape"] = item["audio"].shape if orig_fps != self.new_fps: item["audio"] = torchaudio.functional.resample(item["audio"], orig_fps, self.new_fps) item["meta"]["audio"]["framerate"][0] = self.new_fps return item class ResampleRGB(torch.nn.Module): def __init__(self, new_fps: int) -> None: super().__init__() self.new_fps = new_fps def forward(self, item): orig_fps = float(item["meta"]["video"]["fps"][0]) item["meta"]["video"]["orig_shape"] = item["video"].shape if orig_fps != self.new_fps: duration_sec = item["video"].shape[0] / orig_fps indices = torch.arange(0, orig_fps * duration_sec - 1e-9, orig_fps / self.new_fps) # basically, rounding indices = indices.to(dtype=torch.long) item["video"] = item["video"][indices] item["meta"]["video"]["fps"][0] = self.new_fps return item class ResizeAndLetterboxPad(torch.nn.Module): """Adapted from WACV24 Amazon`s challenge""" def __init__(self, new_h, new_w): super().__init__() self.new_h = new_h self.new_w = new_w self.aspect_ratio = new_w / new_h def forward(self, item): item["video"] = self.resize_and_pad(item["video"]) return item def resize_and_pad(self, rgb: torch.Tensor): _, _, height, width = rgb.shape current_aspect_ratio = width / height if current_aspect_ratio > self.aspect_ratio: scaled_height = round(self.new_w / current_aspect_ratio) rgb = torchvision.transforms.functional.resize(rgb, (scaled_height, self.new_w), antialias=None) top = (self.new_h - scaled_height) // 2 bottom = self.new_h - (scaled_height + top) rgb = torch.nn.ConstantPad2d((0, 0, top, bottom), 0)(rgb) elif current_aspect_ratio < self.aspect_ratio: scaled_width = round(self.new_h * current_aspect_ratio) rgb = torchvision.transforms.functional.resize(rgb, (self.new_h, scaled_width), antialias=None) left = (self.new_w - scaled_width) // 2 right = self.new_w - (scaled_width + left) rgb = torch.nn.ConstantPad2d((left, right, 0, 0), 0)(rgb) return rgb class ResampleResizeLetterboxPad(torch.nn.Module): def __init__(self, afps, vfps, new_h, new_w) -> None: super().__init__() self.transforms = torchvision.transforms.Compose( [ResampleAudio(new_fps=afps), ResampleRGB(new_fps=vfps), ResizeAndLetterboxPad(new_h=new_h, new_w=new_w)] ) def forward(self, x: dict) -> dict: return self.transforms(x) class DoNothing(torch.nn.Module): def __init__(self, *args, **kwargs) -> None: super().__init__() def forward(self, x: dict) -> dict: return x if __name__ == "__main__": grid = make_class_grid(-1, 1, 21) grid = make_class_grid(-2, 2, 41) print("grid:", grid) print("value quantization:", quantize_offset(grid, 0.06)) v_fps = 25.0 duration = 10.0 input = { "video": torch.randint(0, 256, (int(duration * v_fps), 3, 720 // 2, 1280 // 2), dtype=torch.uint8), "audio": torch.arange(221184 - 1).float(), "targets": {}, "meta": { "video": {"duration": [duration], "fps": [v_fps]}, "audio": {"duration": [duration], "framerate": [22050.0]}, "subtitles": {"duration": []}, "cc": {"duration": []}, }, "path": "/home/nvme/data/vggsound/video/-5cWCaoEDlE_261000_271000.mp4", "split": "train", } print(input["audio"].shape, input["video"].shape) fn = EqualifyFromRight(clip_max_len_sec=10) input = fn(input) print(input["audio"].shape, input["video"].shape) fn = RGBSpatialCrop((224, 224), is_random=True) # fn = RGBSpatialCrop((112, 112), is_random=True) input = fn(input) print(input["audio"].shape, input["video"].shape, input["meta"]["audio"]) fn = Resize((224, 224)) input = fn(input) print(input["audio"].shape, input["video"].shape, input["meta"]["audio"]) fn = GenerateMultipleSegments( segment_size_vframes=16, n_segments=14, is_start_random=False, audio_jitter_sec=0.05, step_size_seg=0.5 ) input = fn(input) print(input["audio"].shape, input["video"].shape, input["meta"]["audio"]) fn = RandomApplyColorDistortion(p_gray_scale=0.5, p_color_jitter=0.5, s=1.0) input = fn(input) print(input["audio"].shape, input["video"].shape, input["meta"]["audio"]) fn = RGBToFloatToZeroOne() input = fn(input) print(input["audio"].shape, input["video"].shape, input["meta"]["audio"]) print(input["meta"]) fn = RGBNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) input = fn(input) print(input["audio"].shape, input["video"].shape, input["meta"]["audio"]) print(input["video"].mean(dim=(0, 2, 3))) print(input["meta"]) fn = AudioRandomReverb(p=1.0) input = fn(input) fn = AudioRandomVolume(p=1.0, gain=2.0, gain_type="amplitude") input = fn(input) print(input["audio"].shape, input["video"].shape, input["meta"]["audio"]) fn = AudioRandomPitchShift(p=1.0, shift=1000) input = fn(input) print(input["audio"].shape, input["video"].shape, input["meta"]["audio"]) fn = AudioRandomLowpassFilter(p=1.0, cutoff_freq=100) input = fn(input) print(input["audio"].shape, input["video"].shape, input["meta"]["audio"]) fn = AudioRandomGaussNoise(p=1.0, amplitude=0.01) input = fn(input) print(input["audio"].shape, input["video"].shape, input["meta"]["audio"]) fn = AudioLog() input = fn(input) print(input["audio"].shape, input["video"].shape, input["meta"]["audio"]) # audio only input = { "audio": torch.arange(221184).float(), "meta": { "video": {"duration": [10.0], "fps": [10.0]}, "audio": {"duration": [11.0], "framerate": [22050.0]}, "subtitles": {"duration": []}, "cc": {"duration": []}, }, "path": "/home/nvme/data/vggsound/video/-5cWCaoEDlE_261000_271000.mp4", } print(input["audio"].shape) fn = AudioLog() input = fn(input) print(input["audio"].shape, input["meta"]["audio"]) print(input["meta"]) print(input["audio"].min(), input["audio"].max())