Spaces:
Running
on
L40S
Running
on
L40S
File size: 25,158 Bytes
98a0e3b 258fd02 98a0e3b 258fd02 98a0e3b 258fd02 98a0e3b d658154 258fd02 98a0e3b d658154 98a0e3b d658154 98a0e3b 258fd02 98a0e3b 258fd02 d658154 98a0e3b d658154 98a0e3b 258fd02 d658154 258fd02 d658154 258fd02 98a0e3b 258fd02 98a0e3b 258fd02 d658154 98a0e3b d658154 98a0e3b d658154 258fd02 d658154 258fd02 98a0e3b 3779445 98a0e3b 258fd02 98a0e3b d658154 98a0e3b 258fd02 98a0e3b 258fd02 d658154 258fd02 98a0e3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
from hmac import new
import sys
import os
import argparse
import time
import json
import torch
import torchaudio
import numpy as np
from omegaconf import OmegaConf
from codeclm.models import builders
import gc
from codeclm.trainer.codec_song_pl import CodecLM_PL
from codeclm.models import CodecLM
from third_party.demucs.models.pretrained import get_model_from_yaml
auto_prompt_type = ['Pop', 'R&B', 'Dance', 'Jazz', 'Folk', 'Rock', 'Chinese Style', 'Chinese Tradition', 'Metal', 'Reggae', 'Chinese Opera', 'Auto']
class Separator:
def __init__(self, dm_model_path='third_party/demucs/ckpt/htdemucs.pth', dm_config_path='third_party/demucs/ckpt/htdemucs.yaml', gpu_id=0) -> None:
if torch.cuda.is_available() and gpu_id < torch.cuda.device_count():
self.device = torch.device(f"cuda:{gpu_id}")
else:
self.device = torch.device("cpu")
self.demucs_model = self.init_demucs_model(dm_model_path, dm_config_path)
def init_demucs_model(self, model_path, config_path):
model = get_model_from_yaml(config_path, model_path)
model.to(self.device)
model.eval()
return model
def load_audio(self, f):
a, fs = torchaudio.load(f)
if (fs != 48000):
a = torchaudio.functional.resample(a, fs, 48000)
if a.shape[-1] >= 48000*10:
a = a[..., :48000*10]
return a[:, 0:48000*10]
def run(self, audio_path, output_dir='tmp', ext=".flac"):
os.makedirs(output_dir, exist_ok=True)
name, _ = os.path.splitext(os.path.split(audio_path)[-1])
output_paths = []
for stem in self.demucs_model.sources:
output_path = os.path.join(output_dir, f"{name}_{stem}{ext}")
if os.path.exists(output_path):
output_paths.append(output_path)
if len(output_paths) == 1: # 4
vocal_path = output_paths[0]
else:
drums_path, bass_path, other_path, vocal_path = self.demucs_model.separate(audio_path, output_dir, device=self.device)
for path in [drums_path, bass_path, other_path]:
os.remove(path)
full_audio = self.load_audio(audio_path)
vocal_audio = self.load_audio(vocal_path)
bgm_audio = full_audio - vocal_audio
return full_audio, vocal_audio, bgm_audio
def parse_args():
parser = argparse.ArgumentParser(description='Song Generation Script')
# 必需参数
parser.add_argument('--ckpt_path', type=str, required=True,
help='Path to the checkpoint directory containing config.yaml and model.pt')
parser.add_argument('--input_jsonl', type=str, required=True,
help='Path to input JSONL file containing generation tasks')
parser.add_argument('--save_dir', type=str, required=True,
help='Directory to save generated audio files and results')
# 可选参数
parser.add_argument('--generate_type', type=str, default='mixed',
help='Type of generation: "vocal" or "bgm" or "separate" or "mixed" (default: "mixed")')
parser.add_argument('--use_flash_attn', action='store_true',
help='Whether to use flash attention (default: False)')
parser.add_argument('--low_mem', action='store_true',
help='Whether to use low memory mode (default: False)')
return parser.parse_args()
def generate(args):
ckpt_path = args.ckpt_path
input_jsonl = args.input_jsonl
save_dir = args.save_dir
cfg_path = os.path.join(ckpt_path, 'config.yaml')
ckpt_path = os.path.join(ckpt_path, 'model.pt')
cfg = OmegaConf.load(cfg_path)
cfg.lm.use_flash_attn_2 = args.use_flash_attn
print(f"use_flash_attn: {args.use_flash_attn}")
cfg.mode = 'inference'
max_duration = cfg.max_dur
gen_type = args.generate_type
separator = Separator()
auto_prompt = torch.load('ckpt/prompt.pt')
audio_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint, cfg)
audio_tokenizer = audio_tokenizer.eval().cuda()
merge_prompt = [item for sublist in auto_prompt.values() for item in sublist]
with open(input_jsonl, "r") as fp:
lines = fp.readlines()
new_items = []
for line in lines:
item = json.loads(line)
target_wav_name = f"{save_dir}/audios/{item['idx']}.flac"
# get prompt audio
if "prompt_audio_path" in item:
assert os.path.exists(item['prompt_audio_path']), f"prompt_audio_path {item['prompt_audio_path']} not found"
assert 'auto_prompt_audio_type' not in item, f"auto_prompt_audio_type and prompt_audio_path cannot be used together"
with torch.no_grad():
pmt_wav, vocal_wav, bgm_wav = separator.run(item['prompt_audio_path'])
item['raw_pmt_wav'] = pmt_wav
item['raw_vocal_wav'] = vocal_wav
item['raw_bgm_wav'] = bgm_wav
if pmt_wav.dim() == 2:
pmt_wav = pmt_wav[None]
if pmt_wav.dim() != 3:
raise ValueError("Melody wavs should have a shape [B, C, T].")
pmt_wav = list(pmt_wav)
if vocal_wav.dim() == 2:
vocal_wav = vocal_wav[None]
if vocal_wav.dim() != 3:
raise ValueError("Vocal wavs should have a shape [B, C, T].")
vocal_wav = list(vocal_wav)
if bgm_wav.dim() == 2:
bgm_wav = bgm_wav[None]
if bgm_wav.dim() != 3:
raise ValueError("BGM wavs should have a shape [B, C, T].")
bgm_wav = list(bgm_wav)
if type(pmt_wav) == list:
pmt_wav = torch.stack(pmt_wav, dim=0)
if type(vocal_wav) == list:
vocal_wav = torch.stack(vocal_wav, dim=0)
if type(bgm_wav) == list:
bgm_wav = torch.stack(bgm_wav, dim=0)
pmt_wav = pmt_wav
vocal_wav = vocal_wav
bgm_wav = bgm_wav
with torch.no_grad():
pmt_wav, _ = audio_tokenizer.encode(pmt_wav.cuda())
melody_is_wav = False
elif "auto_prompt_audio_type" in item:
assert item["auto_prompt_audio_type"] in auto_prompt_type, f"auto_prompt_audio_type {item['auto_prompt_audio_type']} not found"
if item["auto_prompt_audio_type"] == "Auto":
prompt_token = merge_prompt[np.random.randint(0, len(merge_prompt))]
else:
prompt_token = auto_prompt[item["auto_prompt_audio_type"]][np.random.randint(0, len(auto_prompt[item["auto_prompt_audio_type"]]))]
pmt_wav = prompt_token[:,[0],:]
vocal_wav = prompt_token[:,[1],:]
bgm_wav = prompt_token[:,[2],:]
melody_is_wav = False
else:
pmt_wav = None
vocal_wav = None
bgm_wav = None
melody_is_wav = True
item['pmt_wav'] = pmt_wav
item['vocal_wav'] = vocal_wav
item['bgm_wav'] = bgm_wav
item['melody_is_wav'] = melody_is_wav
item["idx"] = f"{item['idx']}"
item["wav_path"] = target_wav_name
new_items.append(item)
del audio_tokenizer
del separator
torch.cuda.empty_cache()
if "audio_tokenizer_checkpoint_sep" in cfg.keys():
seperate_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint_sep, cfg)
else:
seperate_tokenizer = None
if seperate_tokenizer is not None:
seperate_tokenizer = seperate_tokenizer.eval().cuda()
for item in new_items:
if "prompt_audio_path" in item:
with torch.no_grad():
vocal_wav, bgm_wav = seperate_tokenizer.encode(item['vocal_wav'].cuda(), item['bgm_wav'].cuda())
item['vocal_wav'] = vocal_wav
item['bgm_wav'] = bgm_wav
torch.cuda.empty_cache()
audiolm = builders.get_lm_model(cfg)
checkpoint = torch.load(ckpt_path, map_location='cpu')
audiolm_state_dict = {k.replace('audiolm.', ''): v for k, v in checkpoint.items() if k.startswith('audiolm')}
audiolm.load_state_dict(audiolm_state_dict, strict=False)
audiolm = audiolm.eval()
audiolm = audiolm.cuda().to(torch.float16)
model = CodecLM(name = "tmp",
lm = audiolm,
audiotokenizer = None,
max_duration = max_duration,
seperate_tokenizer = seperate_tokenizer,
)
cfg_coef = 1.5 #25
temp = 0.9
top_k = 50
top_p = 0.0
record_tokens = True
record_window = 50
model.set_generation_params(duration=max_duration, extend_stride=5, temperature=temp, cfg_coef=cfg_coef,
top_k=top_k, top_p=top_p, record_tokens=record_tokens, record_window=record_window)
os.makedirs(save_dir, exist_ok=True)
os.makedirs(save_dir + "/audios", exist_ok=True)
os.makedirs(save_dir + "/jsonl", exist_ok=True)
for item in new_items:
lyric = item["gt_lyric"]
descriptions = item["descriptions"] if "descriptions" in item else None
pmt_wav = item['pmt_wav']
vocal_wav = item['vocal_wav']
bgm_wav = item['bgm_wav']
melody_is_wav = item['melody_is_wav']
target_wav_name = f"{save_dir}/audios/{item['idx']}.flac"
generate_inp = {
'lyrics': [lyric.replace(" ", " ")],
'descriptions': [descriptions],
'melody_wavs': pmt_wav,
'vocal_wavs': vocal_wav,
'bgm_wavs': bgm_wav,
'melody_is_wav': melody_is_wav,
}
start_time = time.time()
with torch.autocast(device_type="cuda", dtype=torch.float16):
with torch.no_grad():
tokens = model.generate(**generate_inp, return_tokens=True)
mid_time = time.time()
with torch.no_grad():
if 'raw_pmt_wav' in item:
if gen_type == 'separate':
wav_seperate = model.generate_audio(tokens, item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'], chunked=True, gen_type='mixed')
wav_vocal = model.generate_audio(tokens, item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'], chunked=True, gen_type='vocal')
wav_bgm = model.generate_audio(tokens, item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'], chunked=True, gen_type='bgm')
elif gen_type == 'mixed':
wav_seperate = model.generate_audio(tokens, item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'],chunked=True, gen_type=gen_type)
else:
wav_seperate = model.generate_audio(tokens,chunked=True, gen_type=gen_type)
del item['raw_pmt_wav']
del item['raw_vocal_wav']
del item['raw_bgm_wav']
else:
if gen_type == 'separate':
wav_vocal = model.generate_audio(tokens, chunked=True, gen_type='vocal')
wav_bgm = model.generate_audio(tokens, chunked=True, gen_type='bgm')
wav_seperate = model.generate_audio(tokens, chunked=True, gen_type='mixed')
else:
wav_seperate = model.generate_audio(tokens, chunked=True, gen_type=gen_type)
del item['pmt_wav']
del item['vocal_wav']
del item['bgm_wav']
del item['melody_is_wav']
end_time = time.time()
if gen_type == 'separate':
torchaudio.save(target_wav_name.replace('.flac', '_vocal.flac'), wav_vocal[0].cpu().float(), cfg.sample_rate)
torchaudio.save(target_wav_name.replace('.flac', '_bgm.flac'), wav_bgm[0].cpu().float(), cfg.sample_rate)
torchaudio.save(target_wav_name, wav_seperate[0].cpu().float(), cfg.sample_rate)
else:
torchaudio.save(target_wav_name, wav_seperate[0].cpu().float(), cfg.sample_rate)
print(f"process{item['idx']}, lm cost {mid_time - start_time}s, diffusion cost {end_time - mid_time}")
item["idx"] = f"{item['idx']}"
item["wav_path"] = target_wav_name
src_jsonl_name = os.path.split(input_jsonl)[-1]
with open(f"{save_dir}/jsonl/{src_jsonl_name}.jsonl", "w", encoding='utf-8') as fw:
for item in new_items:
fw.writelines(json.dumps(item, ensure_ascii=False)+"\n")
def generate_lowmem(args):
ckpt_path = args.ckpt_path
input_jsonl = args.input_jsonl
save_dir = args.save_dir
cfg_path = os.path.join(ckpt_path, 'config.yaml')
ckpt_path = os.path.join(ckpt_path, 'model.pt')
cfg = OmegaConf.load(cfg_path)
cfg.lm.use_flash_attn_2 = args.use_flash_attn
print(f"use_flash_attn: {args.use_flash_attn}")
cfg.mode = 'inference'
max_duration = cfg.max_dur
gen_type = args.generate_type
chunk_size = 128
use_audio_tokenizer = False
with open(input_jsonl, "r") as fp:
lines = fp.readlines()
for line in lines:
item = json.loads(line)
if "prompt_audio_path" in item:
use_audio_tokenizer = True
break
if use_audio_tokenizer:
separator = Separator()
audio_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint, cfg)
audio_tokenizer = audio_tokenizer.eval().cuda()
auto_prompt = torch.load('ckpt/prompt.pt')
merge_prompt = [item for sublist in auto_prompt.values() for item in sublist]
new_items = []
for line in lines:
item = json.loads(line)
target_wav_name = f"{save_dir}/audios/{item['idx']}.flac"
# get prompt audio
if "prompt_audio_path" in item:
assert os.path.exists(item['prompt_audio_path']), f"prompt_audio_path {item['prompt_audio_path']} not found"
assert 'auto_prompt_audio_type' not in item, f"auto_prompt_audio_type and prompt_audio_path cannot be used together"
with torch.no_grad():
pmt_wav, vocal_wav, bgm_wav = separator.run(item['prompt_audio_path'])
item['raw_pmt_wav'] = pmt_wav
item['raw_vocal_wav'] = vocal_wav
item['raw_bgm_wav'] = bgm_wav
if pmt_wav.dim() == 2:
pmt_wav = pmt_wav[None]
if pmt_wav.dim() != 3:
raise ValueError("Melody wavs should have a shape [B, C, T].")
pmt_wav = list(pmt_wav)
if vocal_wav.dim() == 2:
vocal_wav = vocal_wav[None]
if vocal_wav.dim() != 3:
raise ValueError("Vocal wavs should have a shape [B, C, T].")
vocal_wav = list(vocal_wav)
if bgm_wav.dim() == 2:
bgm_wav = bgm_wav[None]
if bgm_wav.dim() != 3:
raise ValueError("BGM wavs should have a shape [B, C, T].")
bgm_wav = list(bgm_wav)
if type(pmt_wav) == list:
pmt_wav = torch.stack(pmt_wav, dim=0)
if type(vocal_wav) == list:
vocal_wav = torch.stack(vocal_wav, dim=0)
if type(bgm_wav) == list:
bgm_wav = torch.stack(bgm_wav, dim=0)
with torch.no_grad():
pmt_wav, _ = audio_tokenizer.encode(pmt_wav.cuda())
melody_is_wav = False
elif "auto_prompt_audio_type" in item:
assert item["auto_prompt_audio_type"] in auto_prompt_type, f"auto_prompt_audio_type {item['auto_prompt_audio_type']} not found"
if item["auto_prompt_audio_type"] == "Auto":
prompt_token = merge_prompt[np.random.randint(0, len(merge_prompt))]
else:
prompt_token = auto_prompt[item["auto_prompt_audio_type"]][np.random.randint(0, len(auto_prompt[item["auto_prompt_audio_type"]]))]
pmt_wav = prompt_token[:,[0],:]
vocal_wav = prompt_token[:,[1],:]
bgm_wav = prompt_token[:,[2],:]
melody_is_wav = False
else:
pmt_wav = None
vocal_wav = None
bgm_wav = None
melody_is_wav = True
item['pmt_wav'] = pmt_wav
item['vocal_wav'] = vocal_wav
item['bgm_wav'] = bgm_wav
item['melody_is_wav'] = melody_is_wav
item["idx"] = f"{item['idx']}"
item["wav_path"] = target_wav_name
new_items.append(item)
if use_audio_tokenizer:
del audio_tokenizer
del separator
torch.cuda.empty_cache()
if "audio_tokenizer_checkpoint_sep" in cfg.keys() and use_audio_tokenizer:
seperate_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint_sep, cfg)
else:
seperate_tokenizer = None
if seperate_tokenizer is not None:
seperate_tokenizer = seperate_tokenizer.eval().cuda()
for item in new_items:
if "prompt_audio_path" in item:
with torch.no_grad():
vocal_wav, bgm_wav = seperate_tokenizer.encode(item['vocal_wav'].cuda(), item['bgm_wav'].cuda())
item['vocal_wav'] = vocal_wav
item['bgm_wav'] = bgm_wav
if use_audio_tokenizer:
del seperate_tokenizer
torch.cuda.empty_cache()
# Define model or load pretrained model
audiolm = builders.get_lm_model(cfg)
checkpoint = torch.load(ckpt_path, map_location='cpu')
audiolm_state_dict = {k.replace('audiolm.', ''): v for k, v in checkpoint.items() if k.startswith('audiolm')}
audiolm.load_state_dict(audiolm_state_dict, strict=False)
audiolm = audiolm.eval()
offload_audiolm = True if 'offload' in cfg.keys() and 'audiolm' in cfg.offload else False
if offload_audiolm:
audiolm_offload_param = OffloadParamParse.parse_config(audiolm, cfg.offload.audiolm)
audiolm_offload_param.show()
offload_profiler = OffloadProfiler(device_index=0, **(audiolm_offload_param.init_param_dict()))
offload_profiler.offload_layer(**(audiolm_offload_param.offload_layer_param_dict()))
offload_profiler.clean_cache_wrapper(**(audiolm_offload_param.clean_cache_param_dict()))
else:
audiolm = audiolm.cuda().to(torch.float16)
model = CodecLM(name = "tmp",
lm = audiolm,
audiotokenizer = None,
max_duration = max_duration,
seperate_tokenizer = None,
)
cfg_coef = 1.5 #25
temp = 0.9
top_k = 50
top_p = 0.0
record_tokens = True
record_window = 50
model.set_generation_params(duration=max_duration, extend_stride=5, temperature=temp, cfg_coef=cfg_coef,
top_k=top_k, top_p=top_p, record_tokens=record_tokens, record_window=record_window)
os.makedirs(save_dir, exist_ok=True)
os.makedirs(save_dir + "/audios", exist_ok=True)
os.makedirs(save_dir + "/jsonl", exist_ok=True)
for item in new_items:
lyric = item["gt_lyric"]
descriptions = item["descriptions"] if "descriptions" in item else None
pmt_wav = item['pmt_wav']
vocal_wav = item['vocal_wav']
bgm_wav = item['bgm_wav']
melody_is_wav = item['melody_is_wav']
generate_inp = {
'lyrics': [lyric.replace(" ", " ")],
'descriptions': [descriptions],
'melody_wavs': pmt_wav,
'vocal_wavs': vocal_wav,
'bgm_wavs': bgm_wav,
'melody_is_wav': melody_is_wav,
}
with torch.autocast(device_type="cuda", dtype=torch.float16):
with torch.no_grad():
tokens = model.generate(**generate_inp, return_tokens=True)
if offload_audiolm:
offload_profiler.reset_empty_cache_mem_line()
item['tokens'] = tokens
if offload_audiolm:
offload_profiler.stop()
del offload_profiler
del audiolm_offload_param
del model
audiolm = audiolm.cpu()
del audiolm
del checkpoint
gc.collect()
torch.cuda.empty_cache()
seperate_tokenizer = builders.get_audio_tokenizer_model_cpu(cfg.audio_tokenizer_checkpoint_sep, cfg)
device = "cuda:0"
seperate_tokenizer.model.device = device
seperate_tokenizer.model.vae = seperate_tokenizer.model.vae.to(device)
seperate_tokenizer.model.model.device = torch.device(device)
seperate_tokenizer = seperate_tokenizer.eval()
offload_wav_tokenizer_diffusion = True if 'offload' in cfg.keys() and 'wav_tokenizer_diffusion' in cfg.offload else False
if offload_wav_tokenizer_diffusion:
sep_offload_param = OffloadParamParse.parse_config(seperate_tokenizer, cfg.offload.wav_tokenizer_diffusion)
sep_offload_param.show()
sep_offload_profiler = OffloadProfiler(device_index=0, **(sep_offload_param.init_param_dict()))
sep_offload_profiler.offload_layer(**(sep_offload_param.offload_layer_param_dict()))
sep_offload_profiler.clean_cache_wrapper(**(sep_offload_param.clean_cache_param_dict()))
else:
seperate_tokenizer.model.model = seperate_tokenizer.model.model.to(device)
model = CodecLM(name = "tmp",
lm = None,
audiotokenizer = None,
max_duration = max_duration,
seperate_tokenizer = seperate_tokenizer,
)
for item in new_items:
with torch.no_grad():
if 'raw_pmt_wav' in item:
if gen_type == 'separate':
wav_seperate = model.generate_audio(item['tokens'], item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'],chunked=True, gen_type='mixed')
wav_vocal = model.generate_audio(item['tokens'],chunked=True, gen_type='vocal')
wav_bgm = model.generate_audio(item['tokens'], chunked=True, gen_type='bgm')
elif gen_type == 'mixed':
wav_seperate = model.generate_audio(item['tokens'], item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'],chunked=True, gen_type=gen_type)
else:
wav_seperate = model.generate_audio(item['tokens'], chunked=True, gen_type=gen_type)
del item['raw_pmt_wav']
del item['raw_vocal_wav']
del item['raw_bgm_wav']
else:
if gen_type == 'separate':
wav_vocal = model.generate_audio(item['tokens'], chunked=True, gen_type='vocal')
wav_bgm = model.generate_audio(item['tokens'], chunked=True, gen_type='bgm')
wav_seperate = model.generate_audio(item['tokens'], chunked=True, gen_type='mixed')
else:
wav_seperate = model.generate_audio(item['tokens'], chunked=True, gen_type=gen_type)
if gen_type == 'separate':
torchaudio.save(item['wav_path'].replace('.flac', '_vocal.flac'), wav_vocal[0].cpu().float(), cfg.sample_rate)
torchaudio.save(item['wav_path'].replace('.flac', '_bgm.flac'), wav_bgm[0].cpu().float(), cfg.sample_rate)
torchaudio.save(item['wav_path'], wav_seperate[0].cpu().float(), cfg.sample_rate)
else:
torchaudio.save(item['wav_path'], wav_seperate[0].cpu().float(), cfg.sample_rate)
del item['tokens']
del item['pmt_wav']
del item['vocal_wav']
del item['bgm_wav']
del item['melody_is_wav']
if offload_wav_tokenizer_diffusion:
sep_offload_profiler.reset_empty_cache_mem_line()
if offload_wav_tokenizer_diffusion:
sep_offload_profiler.stop()
torch.cuda.empty_cache()
src_jsonl_name = os.path.split(input_jsonl)[-1]
with open(f"{save_dir}/jsonl/{src_jsonl_name}.jsonl", "w", encoding='utf-8') as fw:
for item in new_items:
fw.writelines(json.dumps(item, ensure_ascii=False)+"\n")
if __name__ == "__main__":
torch.backends.cudnn.enabled = False
OmegaConf.register_new_resolver("eval", lambda x: eval(x))
OmegaConf.register_new_resolver("concat", lambda *x: [xxx for xx in x for xxx in xx])
OmegaConf.register_new_resolver("get_fname", lambda: os.path.splitext(os.path.basename(sys.argv[1]))[0])
OmegaConf.register_new_resolver("load_yaml", lambda x: list(OmegaConf.load(x)))
np.random.seed(int(time.time()))
# 解析命令行参数
args = parse_args()
if torch.cuda.is_available():
device = torch.cuda.current_device()
reserved = torch.cuda.memory_reserved(device)
total = torch.cuda.get_device_properties(device).total_memory
res_mem = (total - reserved) / 1024 / 1024 / 1024
print(f"reserved memory: {res_mem}GB")
model_name = args.ckpt_path.split("/")[-1]
assert model_name in ['songgeneration_base'], f'{model_name} is not supported, currently only songgeneration_base is supported'
if model_name == 'songgeneration_base':
if res_mem > 24 and not args.low_mem:
print("use generate")
generate(args)
else:
from codeclm.utils.offload_profiler import OffloadProfiler, OffloadParamParse
print("use generate_lowmem")
generate_lowmem(args)
else:
print("CUDA is not available")
exit()
|