File size: 21,861 Bytes
98a0e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
import torch
from torch.func import functional_call
import queue
import threading
from typing import Dict, List, Any
import omegaconf
from pydantic import BaseModel, validator
from typing import Optional
from functools import wraps

def _callable_once(func):
    @wraps(func)
    def wrapper(self, *args, **kwargs):
        method_called_flag = f"_called_once_{func.__name__}"
        if getattr(self, method_called_flag, False):
            raise RuntimeError(f"{func.__name__} can only be called once.")
        setattr(self, method_called_flag, True)
        return func(self, *args, **kwargs)
    return wrapper

class OffloadCleanCacheWrapperParam(BaseModel):
    module: Any 
    method_name: str
    diff_mem_gb_thre: float

class OffloadParam(BaseModel):
    offload_module: Any 
    cpu_mem_gb: float
    pre_copy_step: Optional[int] = None
    clean_cache_after_forward: Optional[bool] = None
    dtype: Optional[str] = None 
    offload_layer_dict: Dict[str, int] = {}
    ignore_layer_list: List[str] = []
    clean_cache_wrapper: Optional[OffloadCleanCacheWrapperParam] = None
    debug: Optional[bool] = None

    @validator('dtype')
    def parse_dtype(cls, value):
        if value is None:
            return None
        dtype_map = {
            'torch.float16': torch.float16,
            'torch.float32': torch.float32,
            'torch.float64': torch.float64,
            'torch.int64': torch.int64,
        }
        if value not in dtype_map:
            raise ValueError(f"Unsupported dtype: {value}")
        return dtype_map[value]
    
    def init_param_dict(self):
        param_dict = {}
        param_dict['cpu_mem_gb'] = self.cpu_mem_gb
        if self.pre_copy_step is not None:
            param_dict['pre_copy_step'] = self.pre_copy_step
        if self.clean_cache_after_forward is not None:
            param_dict['clean_cache_after_forward'] = self.clean_cache_after_forward
        if self.debug is not None:
            param_dict['debug'] = self.debug
        
        return param_dict
        
    def offload_layer_param_dict(self):
        param_dict = {}
        param_dict['module'] = self.offload_module
        param_dict['offload_layer_dict'] = self.offload_layer_dict
        param_dict['ignore_layer_list'] = self.ignore_layer_list
        param_dict['dtype'] = self.dtype

        return param_dict
    
    def clean_cache_param_dict(self):
        param_dict = {}
        if self.clean_cache_wrapper is not None:
            param_dict['module'] = self.clean_cache_wrapper.module
            param_dict['method_name'] = self.clean_cache_wrapper.method_name
            param_dict['diff_mem_gb_thre'] = self.clean_cache_wrapper.diff_mem_gb_thre

        return param_dict
    
    @staticmethod
    def recursive_print(model, indent=0):
        for field_name, field_info in model.__fields__.items():
            field_value = getattr(model, field_name)
            print(" " * indent + f"{field_name}:")

            if issubclass(type(field_value), BaseModel):
                print(" " * (indent + 2) + f"--- Nested model: {field_value.__class__.__name__}")
                OffloadParam.recursive_print(field_value, indent + 4) 
            else:
                print(" " * (indent + 2) + f"class: {field_value.__class__.__name__}")
                if isinstance(field_value, torch.nn.Module):
                    pass
                else:
                    print(" " * (indent + 2) + f"value: {field_value}")

    def show(self):
        print("-"*20 + "[OffloadParam]" + "-"*20)
        OffloadParam.recursive_print(self)
        print("-"*40)


class OffloadParamParse:
    def __init__(self):
        pass

    @staticmethod
    def _get_model(root_model: torch.nn.Module, model_dir: str):
        assert(model_dir.startswith("self")), f"model_dir {model_dir} must startswith `self`"
        model = root_model
        for layer in model_dir.split('.'):
            if layer == "self":
                continue
            assert(hasattr(model, layer)), f"model not has layer [{layer}]!"
            model = getattr(model, layer)
        return model

    @staticmethod
    def parse_config(root_model: torch.nn.Module, cfg: omegaconf.DictConfig)->OffloadParam:
        assert(hasattr(cfg, "offload_module") and hasattr(cfg, "cpu_mem_gb") and hasattr(cfg, "dtype"))
        
        offload_module = OffloadParamParse._get_model(root_model, cfg.offload_module)
        cpu_mem_gb = cfg.cpu_mem_gb
        dtype = cfg.dtype

        pre_copy_step = cfg.pre_copy_step \
            if hasattr(cfg, "pre_copy_step") else None

        clean_cache_after_forward = cfg.clean_cache_after_forward \
            if hasattr(cfg, "clean_cache_after_forward") else None
            
        offload_layer_dict = {k: v for k, v in cfg.offload_layer_dict.items()} \
            if hasattr(cfg, "offload_layer_dict") else {}

        ignore_layer_list = cfg.ignore_layer_list \
            if hasattr(cfg, "ignore_layer_list") else []
        
        debug = cfg.debug if hasattr(cfg, "debug") else None
        
        clean_cache_wrapper = None
        if hasattr(cfg, "clean_cache_wrapper"):
            clean_cache_cfg = cfg.clean_cache_wrapper
            cc_module = OffloadParamParse._get_model(root_model, clean_cache_cfg.module)
            cc_method_name = clean_cache_cfg.method_name
            diff_mem_gb_thre = clean_cache_cfg.diff_mem_gb_thre
            clean_cache_wrapper = OffloadCleanCacheWrapperParam(
                                        module=cc_module, 
                                        method_name=cc_method_name, 
                                        diff_mem_gb_thre=diff_mem_gb_thre)
        
        return OffloadParam(
            offload_module=offload_module,
            cpu_mem_gb=cpu_mem_gb,
            pre_copy_step=pre_copy_step,
            clean_cache_after_forward=clean_cache_after_forward,
            dtype=dtype,
            offload_layer_dict=offload_layer_dict,
            ignore_layer_list=ignore_layer_list,
            clean_cache_wrapper=clean_cache_wrapper,
            debug=debug
            )


class LayerParamStruct:
    def __init__(self):
        self.count = 0
        self.device_state = None


class OffloadProfiler:
    def __init__(self, device_index=0, cpu_mem_gb=-1, pre_copy_step=1, clean_cache_after_forward=False, debug=False):
        self.clean_cache_after_forward = clean_cache_after_forward
        self.cpu_mem_gb = cpu_mem_gb
        self.cpu_mem_b_count = 0
        self.device_index = device_index
        self.execution_order = []
        self.execution_order_idx = {} 
        self.pin_memory = False
        test_data = torch.rand(1,1, device='cpu')
        pin_data = test_data.pin_memory()
        self.pin_memory = pin_data.is_pinned()
        print(f"pin:{self.pin_memory}")
        self.copy_stream = torch.cuda.Stream() 
        self.copy_queue = queue.Queue() 
        self.layer_param:Dict[str, LayerParamStruct] = {} 
        self.model_map = {}
        self.stop_flag = False
        self.copy_condition = threading.Condition()
        self.queue_condition = threading.Condition()
        self.mem_line_b = 0

        self.copy_thread = threading.Thread(target=self._copy_thread_fun)
        self.copy_thread.daemon = True
        self.copy_thread.start()

        self.cur_copy_idx = 0 
        self.execute_over = False
        self.pre_copy_step = pre_copy_step

        self.tmp_state_list = []
        self.tmp_state_idx = 0
        for i in range(pre_copy_step + 2):
            self.tmp_state_list.append(None)

        self.debug = debug

    def stop(self):
        self.stop_flag = True
        with self.queue_condition:
            self.queue_condition.notify()
        self.copy_thread.join()

        del self.layer_param
        del self.model_map
        del self.copy_stream

    def _copy_thread_fun(self):
        while self.stop_flag == False:
            layer_name = "--"
            with self.queue_condition:
                while self.copy_queue.qsize() == 0 and self.stop_flag == False:
                    self.queue_condition.wait()
                if self.stop_flag == True:
                    break
                layer_name = self.copy_queue.get()
            with torch.cuda.stream(self.copy_stream):
                if layer_name in self.model_map:
                    model = self.model_map[layer_name]
                    self.tmp_state_list[self.tmp_state_idx] = {
                        k: v.to(torch.device(f"cuda:{self.device_index}"), non_blocking=False)
                        for k, v in model.state_dict().items()
                    }
                    self.copy_stream.synchronize()

                    device_state = self.tmp_state_list[self.tmp_state_idx]
                    self.tmp_state_idx = (self.tmp_state_idx + 1) % len(self.tmp_state_list)

                    with self.copy_condition:
                        if layer_name in self.layer_param:
                            self.layer_param[layer_name].count += 1
                        else:
                            self.layer_param[layer_name] = LayerParamStruct()
                            self.layer_param[layer_name].count = 1
                        self.layer_param[layer_name].device_state = device_state
                        self.copy_condition.notify()
                else:
                    print(f"get model error! {layer_name}")
        print("copy thread stop..")

    def _get_new_step_copy_begin_end(self, tag_name):
        
        pre_copy_step = self.pre_copy_step
        pre_copy_step = min(pre_copy_step, len(self.execution_order) // 2)
        
        cur_exe_idx = self.execution_order_idx[tag_name]
        copy_begin = self.cur_copy_idx
        copy_end = cur_exe_idx + pre_copy_step + 1
        if copy_end - copy_begin > len(self.execution_order):
            copy_end %= len(self.execution_order)
        if copy_end - copy_begin > pre_copy_step + 1 or copy_end - copy_begin < 0:
            # jump
            self.cur_copy_idx = cur_exe_idx
            copy_begin, copy_end = self._get_new_step_copy_begin_end(tag_name=tag_name)
        return copy_begin, copy_end
    
    def make_forward_wrapper(self, module, tag_name, ignore_layer_list=[]):
        original_forward = module.forward
        layer_param_size = 0
        for name, param in module.named_parameters():
            layer_param_size += param.data.numel() * param.data.element_size() / 1024 / 1024 #MB
        
        taget_cpu_mem_b = self.cpu_mem_gb * 1024 * 1024 * 1024
        offload = False
        for name, param in module.named_parameters():
            p_name = f"{tag_name}.{name}" if tag_name else name
            for i_layer in ignore_layer_list:
                if p_name.startswith(i_layer):
                    if self.debug:
                        print(f"ignore layer param: {p_name}")
                    continue

            if taget_cpu_mem_b >= 0 and self.cpu_mem_b_count >= taget_cpu_mem_b:
                break
            cpu_data = torch.empty_strided(size=param.data.size(),
                                        stride=param.data.stride(),
                                        dtype=param.data.dtype,
                                        layout=param.data.layout,
                                        device='cpu',
                                        pin_memory=self.pin_memory)
            cpu_data.copy_(param.data)
            param.data = cpu_data

            param_size = param.data.numel() * param.data.element_size()
            self.cpu_mem_b_count += param_size
            offload = True
        if self.debug:
            print(f"layer: {tag_name}, type: {module.__class__.__name__}, size(MB): {layer_param_size}, offload: {offload}, sum_offload_size(MB): {self.cpu_mem_b_count/1024/1024}")
        
        if offload:
            copy_condition = self.copy_condition
            queue_condition = self.queue_condition
            copy_queue = self.copy_queue
            layer_param = self.layer_param
            def forward_wrapper(*args, **kwargs):
                module.forward = original_forward

                execute_over = False if tag_name not in self.execution_order_idx else True
                if execute_over == False:
                    self.model_map[tag_name] = module
                    self.execution_order.append(tag_name)
                    self.execution_order_idx[tag_name] = len(self.execution_order) - 1
                    copy_queue.put(tag_name)
                    with queue_condition:
                        queue_condition.notify()
                else: 
                
                    copy_begin, copy_end = self._get_new_step_copy_begin_end(tag_name=tag_name)
                    if copy_end > copy_begin:
                        for idx in range(copy_begin, copy_end):
                            idx = idx % len(self.execution_order)
                            copy_tag_name = self.execution_order[idx]
                            copy_queue.put(copy_tag_name)
                            with queue_condition:
                                queue_condition.notify()

                        self.cur_copy_idx = copy_end % len(self.execution_order)
                
                run_state = None
                with self.copy_condition:
                    while tag_name not in self.layer_param:
                        copy_condition.wait()
                    run_state = self.layer_param[tag_name].device_state
                    self.layer_param[tag_name].count -= 1
                    
                module.eval()
                with torch.no_grad():
                    output = functional_call(module, run_state, args=args, kwargs=kwargs)
                with self.copy_condition:
                    if self.layer_param[tag_name].count == 0:
                        del self.layer_param[tag_name]
                diff_mem_b_thre = 1 * (1024 ** 3)
                if self.clean_cache_after_forward:
                    reserved = torch.cuda.memory_reserved()
                    if reserved > self.mem_line_b:
                        torch.cuda.empty_cache()
                        cur_reserved = torch.cuda.memory_reserved()
                        diff_mem = reserved - cur_reserved
                        if diff_mem > diff_mem_b_thre:
                            self.mem_line_b = cur_reserved + (reserved - cur_reserved) / 2 + 10
                        else:
                            self.mem_line_b = reserved + 10
                        if self.debug:
                            print(f"child mem line update, clean cache:{reserved/1024/1024}, cur mem: {cur_reserved/1024/1024}  new limit: {self.mem_line_b / 1024 / 1024}, child name: {tag_name}")
                    
                module.forward = forward_wrapper
                return output
            module.forward = forward_wrapper
        
        torch.cuda.empty_cache()
        return module
    
    def reset_empty_cache_mem_line(self):
        self.mem_line_b = 0
        torch.cuda.empty_cache()
    
    def clean_cache_wrapper(self, module, method_name='', diff_mem_gb_thre=1):
        if not hasattr(module, method_name) or not callable(getattr(module, method_name)):
            print(f"no this method {method_name}")
            return module
        
        original_fun = getattr(module, method_name)
        diff_mem_b_thre = diff_mem_gb_thre * (1024 ** 3)
        self.reset_empty_cache_mem_line()

        def clean_wrapper(*args, **kwargs):
            setattr(module, method_name, original_fun)
            output = original_fun(*args, **kwargs)
            reserved = torch.cuda.memory_reserved()
            if reserved > self.mem_line_b:
                torch.cuda.empty_cache()
                cur_reserved = torch.cuda.memory_reserved()
                diff_mem = reserved - cur_reserved
                if diff_mem > diff_mem_b_thre:
                    self.mem_line_b = cur_reserved + (reserved - cur_reserved) / 2 + 10
                else:
                    self.mem_line_b = reserved + 10

                if self.debug:
                    print(f"mem line update, clean cache:{reserved/1024/1024}, cur mem: {cur_reserved/1024/1024}  new limit: {self.mem_line_b / 1024 / 1024}")
            setattr(module, method_name, clean_wrapper)
            return output
        
        setattr(module, method_name, clean_wrapper)
        return module
    
    @_callable_once
    def offload_layer(self, module, offload_layer_dict={},  ignore_layer_list=[], dtype:torch.dtype = None):
        return self._offload_layer(
                                    module=module,
                                    tag="",
                                    offload_layer_dict=offload_layer_dict,
                                    ignore_layer_list=ignore_layer_list,
                                    dtype=dtype
                                    )
    
    def _offload_layer(self, module, tag="", offload_layer_dict={},  ignore_layer_list=[], dtype:torch.dtype = None):
        """
            Offload specific layers of a PyTorch model to a specified depth.
            A model can only be offloaded once.

            Args:
                module (torch.nn.Module): 
                    The PyTorch model containing the layers to offload. This is the model that will be modified in place.
                
                tag (str, optional): 
                    A string identifier for the model. 
                    Default is an empty string.
                
                offload_layer_dict (dict, optional): 
                    A dictionary where keys are layer names and values represent the depth at which the offloading should occur. 
                    For example, 
                    ```offload_layer_dict = {'cfm_wrapper': 5, 'hubert': 4}``` means that the `cfm_wrapper` layer should 
                    be offloaded at depth 5, and the `hubert` layer should be offloaded at depth 4.
                    Default is an empty dictionary.
                
                ignore_layer_list (list, optional): 
                    A list of layer names or parameter identifiers to be ignored during the offloading process. 
                    Layers in this list will not be offloaded, even if they are present in the `offload_layer_dict`. 
                     For example, 
                    ```ignore_layer_list = ['cfm_wrapper.estimator.h', 'cfm_wrapper.estimator.adaln_single']```
                    means that layers starting with `cfm_wrapper.estimator.h` or  'cfm_wrapper.estimator.adaln_single' will not be offload.
                    Default is an empty list.
                
                dtype (torch.dtype, optional): 
                    The data type (e.g., `torch.float16`, `torch.float32`) to which the offloaded layers should be converted. 
                    If `None`, the data type of the layers will remain unchanged. Default is `None`.

            Returns:
                None
        """
        for p in module._parameters.values():
            if p is not None:
                p.data = p.data.to(torch.device(f"cuda:{self.device_index}"))
                if dtype is not None:
                    p.data = p.data.to(dtype)
        for b in module._buffers.values():
            if b is not None:
                b.data = b.data.to(torch.device(f"cuda:{self.device_index}"))
                if dtype is not None:
                    b.data = b.data.to(dtype)
        for attr_name, attr in module.__dict__.items():
            if isinstance(attr, torch.Tensor) and not attr_name.startswith('_'):
                attr.data = attr.data.to(torch.device(f"cuda:{self.device_index}"))
                if dtype is not None:
                    attr.data = attr.data.to(dtype)

        for name, child in module.named_children():
            current_tag = f"{tag}.{name}" if tag else name
            child = child.to(torch.device(f"cuda:{self.device_index}"))
            if dtype is not None:
                child = child.to(dtype)

            torch.cuda.empty_cache()
            setattr(module, name, child)
            pre_name = current_tag.split('.')[0]
            if pre_name not in offload_layer_dict:
                param_size = 0
                for p in child.parameters():
                    param_size += p.data.numel() * p.data.element_size()
                param_size = param_size / 1024 / 1024
                if self.debug:
                    print(f"not offload layer {current_tag}, size: {param_size}MB")
                continue
            
            has_children = any(child.named_children())
            layer_count = current_tag.count('.') + 1
            
            layer_deep = offload_layer_dict[pre_name]
            if layer_count >= layer_deep:
                has_children = False 
            
            if has_children:
                self._offload_layer(module=child, 
                                   tag=current_tag, 
                                   offload_layer_dict=offload_layer_dict, 
                                   ignore_layer_list=ignore_layer_list,
                                   dtype=dtype)
                continue

            ignore = False
            for i_layer in ignore_layer_list:
                if current_tag.startswith(i_layer):
                    ignore = True
                    if self.debug:
                        print(f"ignore layer offload: {current_tag}")
                    break
    
            if hasattr(child, "forward") and not ignore:
                child = self.make_forward_wrapper(
                    child, current_tag, ignore_layer_list=ignore_layer_list
                )
        return module
    
    def get_execution_order(self):
        return self.execution_order